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2. IDEAL EXPONENTS

Readers may refer to [22], [21] and [23].

An idealistic exponent is a pair (J,b) where
(1) J is an ideal given in an ambient scheme Z
(2) and b is a positive integer.

(a) The ambient scheme is a smooth irreducible scheme of finite
type over a base field K. Our primary interest lies in the
case in which K is perfect of characteristic p > 0. But for
technical reasons we may consider imperfect cases, too.

(b) We sometimes need ambient extensions from Z to

Z[t] = Z xx Spec(K[t])

with a finite number of additional variables ¢.

(c) Define the order and singular locus by
(2.1) orde(J,b) = b rorde(J) and
Sing(J,0) = { €€ Z | orde(J,b) >1}.

Definition 2.1. A blow-up 7 : Z’ — Z with center D is said permis-
sible for £ = (J,b) if D is smooth irreducible and C Sing(FE).

Definition 2.2. The transform of E = (J,b) by 7 is E' = (J',b)
with J' = (I(D, Z)0z)7*JOz where I(D, Z) denotes the ideal sheaf
defining D C Z.

In other words the b-times exceptional divisor is removed from the
total transform. Note that I(D, Z)Oyz is invertible as Oz-module.
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3. DIFFERENTIAL OPERATORS IN CHARACTERISTIC p > O

Conventional Notation:
dim(Z) = n > 1, £ € Z is usually a closed point, Oy denotes the
structure sheaf. R = R = Oz¢, M = Mg = max(R), k = ke = R/M.

Assume that x is separable algebraic over K and pick any regular
system of parameters x = (z1,--- ,x,) of R. Then there exist a free

base {0 = 0" a € Zy} of the R-module of differential operators
Dif fz¢ = Dif fr/k, uniquely determined by the following property.

(3.1) 9@ B — (D)aP= ifBea+Zy
0 if otherwise

called “elementary” differential operators with respect to x.
Using a system of indeterminates t = (¢, -- ,t,) we have

(3.2) I (f)(x) = the coefficient of t* in f(x +1).

We pick ¢ = p®, e > 0, and let p denote the Frobenius p-th power so
that p°(f) = fo.
Remark 3.1. We have Dif fr)ery C Dif fr/x. Let us denote
(3.3) €'(q) = {a€Zi|0<a; <qg—1,Vj}
Then {0, a € ¢"(q)} is a free base of R-module Dif friper)- It is
dual to the free base {z° | b € €*(q)} of R as p*(R)-module.

Let Dif fg:/)K (also Dif fg?) denote the R-submodule of Dif fz¢
which consists of those differentil operators of orders < m.

(3.4) Define Dz‘ffé?}% ={0¢ Diff}g?/)ﬂg I(K)=0}

We let Diff]*%&/K =Diff7¢= Ui m>o Diffl(%?/)ﬂz'
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4. IDEMPOTENT DIFFERENTIAL OPERATORS

Review on logarithmic differential calculus. Refer to the work of
H.Kawanoue, [27]. We then extend it to those of “idempotent” and
“primitive” operators which we introduce in this section and the next.

Consider a field extension L = K(z) with = (z1,--- ,z,) which is
a g-independent base of L/K in the follwoing sense.
(1) For each i, z{ = a; € K, and
(2) every relation among x over K is generated by X! —a;, 1 <i <
n, in the polynomial algebra K|[X].

Definition 4.1. Define the Z/pZ-module Dlog,(L/K) which is freely
generated by {z?0@ € Diffr/x|a € €(q)}. They will be called g¢-
logarithmic differential operators of L/K with respect to x.

We then define “idempotent differential operators” as folows.
(4.1) 0@ =" Y Oy afo®
kees (q)N(a+Z§)

where C,;, are chosen as follows: C,, =1 and for b # a

C.y = - Zk6a+28,bek+zg,b7&k Cak (Z) if b€ (a+Zg),# a,
¢ 0 if otherunse.

We then have that

booirp
(4.2) D(a)xb:{if ifb=a

0  if otherwise

(1) 2@ is idempotent for every a € €(q), i.e., 9o = p(@)
(2) they are mutually independent, i.e., 90® =0 for all a # b
(3) and -, c.o(p) 2@ = 1, the identity operator in Dif frx.

We then define 9* = >, 0; and call it a *full ID for L/K.

Theorem 4.1. With L/K Let 0*(i),i = 1,2, be a pair of the *-full
ID operators. We then have 9*(2)0*(1) = 0*(2) and also *(1)(h) —
0*(2)(h) € K for every h € L.

It should be noted that those 0*(¢) may be the ones defined with
respect to resular system of parameters at birationally correponding
points of different birational models respectively. For instance think of
one model and another obtained by a sequence of blowups.
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5. PRIMITIVE AND NILPOTENT DIFFERENTIAL OPERATORS
Consider L = K (u) with ¢-independent base u for L/K.

Definition 5.1. For each a € €°(q) with the length s of u we define
5 = u~9@. Here the division is done inside Dif f, K-

Theorem 5.1. With L = K[u] we have the following equality.

(5.1) (Z/pZ)[ u, {0} ] = (Z/pZ)] u, {5} ]
where the set { } is for all indices a € €°(q).

Theorem 5.2. Consider the following special case.

(1) L and K are the fields of reqular local rings R and S C R,
(2) (u,w) is a reqular system of parameters of R while (ud,w) is
that of S and R = S[u] with q-independent w.
We then claim that P = {556”), Va € €°(q)} has the following properties.

(1) P is a free base of the R-module Dif fr/s as well as that of
L-module Dif fr/xk.

(2) P is dual to the free base { u*,a € €¥(q) } of L/K, i.e, for every
a € €°(q) and for ' € €(q) we have

(52) (Sia)'u,al _ {1 Zfa = a/

0  if otherwise
Theorem 5.3. (1) For 0 € €(q) we have
(5.3) 60 = 2 = identity — Z w5
0#aces(q)
which is idempotent and € Hom pe(reypw) (R, p°(Re)w]).
(2) 506\ = 5% for every a € €*(q), and

(0) ; _
5([1)5(0) _ 5u Zf a =0
o 0 if a # 0

(3) Ifa # 0 and b # 0 then 6576 = 0. For a # 0, 6 is square
nilpotent.

(4) Paces(q) PR = Hompe(ryw) ( R, p°(R)[w] )
(5) 0=73",015 is square-nilpotent if and only if O € Dif f3. This
means 0, = 0.

Definition 5.2. Let us define:
Plujw) = Y p*(R)S = Hompemyu) ( R, p°(R)w] )

age’(q)



6 H. HIRONAKA

and
Piu/w) =3 p(R)8 =Pi(u/w)N Diff
0#a€es(q)
Note that they depend only on w but not on u at all.
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6. INFINITELY NEAR SINGULARITIES

In this section we consider an arbitrary base field K.

Definition 6.1. An LSB over Z is defined to mean a diagram of the

following form.

Tr—1 Tyr—2
., — U, 1CZ_1 —

Dr—l

™ 0
— U,Cc/zy — UyC Zy=2

U U
D, Dy
where U; C Z; is open, D; is a “regular” irreducible closed in U; and
the m; : Z;11 — U; is the blow-up with center D;.
Any blowup with empty center is the identity morphism
Definition 6.2. We define the t-indexed disjoint union:
(6.1) S(E) =
U,{ the LSBs over Z[t] permissible for E[t] = (J[t],b) }

which is the totality of the infinitely near singular points of E in Z, with
arbitrary finite systems ¢ of indeterminates. Say “FEs is more singular
than F” if §(E,) D &(FE), and define the equivalence relation by

Definition 6.3. When the base field K is arbitrary, we take its alge-
braic closure K and consider the base field extensions

(6.3) Z=7xgK and E=E xxK

We will let o denote the projection Z — Z so that E=o0"YE), the
pullback of £ = (J,b) by o that is (JO3;,b) on Z. Then we have &(E)
which will be also written as S(E).
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7. THREE BASIC TECHNICAL THEOREMS

Recall what we called the Three Key Theorems which were proven
in [22] and [24].
Theorem 7.1. (Differentiation theorem )

For every Oz-submodule D of Diffg), we have

SDiffPJb—i) > &(J,b)

Theorem 7.2. (Ambient Reduction Theorem)
Given an ideal exponent E = (J,b) in Z, we let
b—1 b
Jt = Z(Dz’ f fgk]) " with b= b,
=0
For any smooth subscheme W C Z, we let F = (J*Oy,b%). Then
F is an ambient reduction of E from Z to W in the following sense
(definition):
Pick any t and any LSB over Z|t], such that all of its
centers are in the strict transforms of W(t]. Then we
have LSB € &(F) if and only if the LSB induces to W
the one belonging to &(F).

Theorem 7.3. (Numerical Exponent Theorem)

Let E; = (J;,b;),1 = 1,2, be two ideal exponents in Z. If &(F,) =
S(Es) then orde(J1)/by = orde(J) /by for every & € Z where any one
of the two is > 1.
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8. THE CHARACTERISTIC ALGEBRA

We are primarly interested in the case of a “perfect” base field K.
An important point of the “perfect” case is the the geometric definition
coincides with the algebraic one for the characterisitic algebra. They do
not in general. The geometric and the algebraic have different charaters
with respect to base field extenstions.

If K is imperfect we then take the algebraic closure K of K and the
base field extention from K to K. We then have Z = Z XKK projection
morphism ¢ : Z — Z, E = ExgK and we let §(F) = &(FE) compared
with G(F). We examine the “inseparable descent” with respect to o.

»

Definition 8.1. The “geometric ” characteristic algebra of E = (J,b)
is defined to be the following graded Oz-algebra.

(8.1) 9geo(E) = > Jmaz(a)T

where 7' is a dummy variable to indicate homogeneous degrees and
(8.2) Tmaa(a) = | J{I| 6(I,a) > &(J,b)}

Definition 8.2. The “algebraic ” characteristic algebra ©q4(E) of E =
(J,b) is defined to be the integral closure of the following subalgebra.

(83)  Og[JTV] =Y (J)* TV Y 0T = O[T
a=0 B=0

where b¥ = b! and
. bt/ (b—
Jt = E (szfé’;])KJ) /(b=p)

0<pu<b—1

Thus p(F) is clearly finitely presented as a graded Oz-algebra with
globally coherent homogeneous parts.

Theorem 8.1. We always have pu,(E) D @g4e0(E) If the base field
mathbbK is perfect then we have Pgeo(E) = @ag(E).

This theorem asserts that the algebraic condition Eq.(8.3) of is equiv-
alent to the geometric one Eq.(8.1). This has been proven in my earlier
paper [23]. For the detail of the proof of the algebraic characterization
Eq.(8.3) of p(E), the reader should refer to the proofs of Lemmas 2.1 -
2.2 and the equality (b) of page 918 of the paper [23]. They are given in
the proof of the Main Theorem of [23] asserting the finite presentation
of p(F).
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Theorem 8.2. The graded Oz-algebra p(E) = >, Jmaz(a) for E =
(J,b) is the smallest Oz-subalgebra of Oz[T] such that

(1) ] C Imaa (D)

(2) szfZ Imaz(@) C Jmaz(a —p) for all0 < p < a and

(3) p(E) is integrally closed in Oz[T].

For a proof of the second property above, we may use Differentiation
theorem Th.(7.1) applied to Jya.(a) of Eq.(8.2) and Th.(8.1), together
with the following lemma.

Lemma 8.3. For every a = Y o (b — i)a; with a € Z4 and for every
p<a,
b ‘ b
piffd(TLirs0)™) < > (T1irrds)")
i BEZY i
120 Bilb—i)=a—p

For its proof once again we refer to Remarks (2.1)-(2.2) of [23].

|
—_

|
—

Il
<)
Il
=)

Remark 8.1. For comparison we first recall the case of characteristic
zero, for instance K = C. Consider a plane curve defined by

flz,y) = Zcijmiyj with ¢;; € K
(4]
such that its multiplicity is m = ordo)(f) and its first characteristic
exponent is n/m =6 = min{i/(m —j) | j <m,c;; #0}.
Now for E = (fK]z,y], m), we can prove that p(E) = > "% Juas(1)T°
is determined by ¢ within a neighborhood of £ € Z as follows:

Jinaz(l) = {xiyj | %"‘] >1,i>0,j>0}K[z,y], VI>0.

As is seen below, the above assertion fails to be true in general when
char(K) =p > 0.

Next, let K be an algebraically closed field of characteristic p > 0.
Consider a plane curve defined by f = y? — 2™ with ¢ = p®,e > 0, and
n > ¢, (n,p) = 1. Then we have a “ 3 ”-dimensional Newton polygon,
so to speak, in the sense that

Jmax(l) =
{ 2"/ f*]i>0,5>0,k>0, ineq(l) }K[z,y], VI >0
where ineq(l) means

P9+ o kg > 1.
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9. COMMENTS ON THE IMPERFECT BASE FIELD

Consider the case of Z “smooth” over K which is “imperfect”.
We then use the algebraic closure K of K after Def.(6.3) and Eq.(6.3)
witho: Z — Z, E, 6(E), ¢(E) = p(F),“geometric” and “algebraic”.

“Geometrically” ©geo(E) is © more effective than pge,(E).

Theorem 9.1. In general, including the cases of imperfect K, ©q4(E)

1s equal to the “inseparable descent” of palg(E’) from K to K in the
sense of Def.(9.1) below, while pgeo(E) contains the inseparable descent

of pgeo(E) but not equal in general.

Definition 9.1. We define the “naive” inseparable descent of a O -
module A by ¢ from K to K. This “descent” is defined as follows:

(1) Choose and fix a free base of K as K-module including 1:
(9.1) {ci,z' € {1,0}} where C C K\ K

(2) Every element f € A is uniquely written as f; + > icc bifi with
b; € Oz where o, denotes the direct image of A by o.

(3) Then the “descent” of A with respect to the chosen Eq.(9.1) to
be the collection of f; for all f € A.

In general the “naive” descent depends upon the choice of Eq.(9.1).

When it is independent of, we call it the inseparable descent of A.

Theorem 9.2. The “descent” defined by Def.(9.1) for pag(E) is in-
dependent of the choice of Eq.(9.1) and it is equal to pay(E), which is
the finitely presented graded Oz-algebra having the “algebrac” charac-
terization Eq.(8.3) of Th.(8.1).

The proof is by Diff; = Diffz; ®0, O; and by the descent of
integral closure.

Now back to the perfect K and examine the changes of o with respect
to locarisaions at non-closed points, such as generic points of singular
locus of E.

Pick a system of parameters t = (t1,--- ,t4) with t; € Oz¢, ¥y, such
that

(1) the t;,1 < j < d, are algebraically independent over K and ¢
is extendable to a system of “separating transcendental base of
the function field K(Z).

(2) Let V denote the multiplicative group of nonzero elements of
K[t], and apply the localization V™! to Z, E and p(F).
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Example 9.1. Let D;,1 < i < s, be the reduced irreducible compo-
nents of Sing(E) having dim(D;) = dim(Sing(E). Then pick ¢; €
Mi<j<sOz; for everry j in such a way that ¢ induces a separating tran-
scendental base of the function field of D; over K for every ¢. Then ¢
has the properties (1 and (2) as above.

Theorem 9.3. Consider V™'E) as an ideal exponent in V~'Z which
is a smooth scheme over the new base field K(t). We then claim that

(1) ©4e0(VLE) is equal to V' 0,e0(E), while -

(2) 9ag(VLE) is equal to the “inseparable descent” of ©a1y(V—1E)
where the™ denote the base field extension from K(t) to its alge-

—

braic closure K(t).

The first claim is by the fact that
(9.2) VHS(E) = 6(V'E)

where G denotes the totality of infinitely near singularities in the sense
of Def.(6.2). The second claim is a special case of Th.(9.2).
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10. EDGE DECOMPOSITIONS

For a regular system of parameters = (z1,--- ,x,) of R, let T =
(Z1,- -+, &) wWith Z; = ing(z;),1 <i < n. We have
gre(Re) = @D ME/METH = ke[, -, 7,
d>0

This section along with the earlier ones on infinitely near singularities
and characteristic algebra are essencially same with what have been
presented at the conference June 2006 in Trieste, Ttaly, [25].

Theorem 10.1. (Edge Generators Theorem)
We can find

(1) a regular system of parameters v = (y,z) of Re where y =
(y1, - ,yr) with 0 <r < n,
(2) a sequence of powers of p: ¢; = p°,0<e; <--- < e,
(3) gi = y;h +€ € Jmaz(Qz)§ with Ordf(ei) > q;
such that for every a > 0

(10.1) Jmaa(@)e  C MU+ (ﬁgjf)Rg.

BEZ]
a=3 71 ;B;

Remark 10.1. If there happens to have ¢; = 1 for some j then we may
replace y; by g;, aiming a “possible” ambient reduction to y; = 0.

Theorem 10.2. (Edge Decomposition Theorem)
We obtain the following equivalence which holds within a sufficiently
small neighborhood U of € € Z -

(10.2) E ~ ( N, E ) N F
which means
s(E) = (N &(E) ) N &(F)
where E; = (¢;:0vu, ¢;),1 <i<r, and F = (I,c) with orde(I) > c.
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Definition 10.1. Given an ideal exponent F and a closed point £ €
Sing(FE), a set of edge data of E at £ will mean a combination of the
following objects and their expressions:

(1) The edge parameters y = (y1,- -+ ,Yr),
(2) the edge generators g = (g1, ,g-) with g; = y¥ + ¢; and
(3) the edge decomposition

E ~ (ﬂ EZ> m F where E; = (9,02, ¢;)

=1

Definition 10.2. The primary inductive strategy:

Our approach to the inductive proof will be based upon
the following system of numbers.

(10.3) Inve(E) = (n,n—r,q1,- ,qr).

with respect to the lexicographical ordering. The sys-
tem will be called the edge invariants of E at & The
first number n is dim¢Z and the other numbers {r, ¢; =
p%,1 <i <} are the ones defined by Th(10.1).

Remark 10.2. If n = 1 then the problem is trivial. If n —r = 0, it is
easy. If n —r = 1 then it is a question similar to resolution of curve
singularities. What is more, if ¢ = 1 that is e; = 0 then at least
“locally” at £ we can apply the ambient reduction theorem Th.(7.2)
from Z to the hypersurface g; = y; = 0. This provision “locally” will
be cleared later by a “global” procedure of selecting and modifying
those y;. The inductitive proof will thus start working.
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11. TRANSFORMS OF EDGE DATA

We want to examine transforms of the edge parameters y and the
edge generaters g by means of permissible blowups for the given E. .

Theorem 11.1. Pick a blowp w : Z' — Z with center D permissible
for E. Then the edge invariants never increases. To be precise pick
any closed point &' € 7= 1(€)NSing(E") where E' denotes the transform
of E by m. Then we have Invg(E') < Inve(E) in the lexicographical
ordering.

Theorem 11.2. Let w : Z' — Z be a permssible blowup for E. Let
I = I(Z,D)¢, Pick a closed point & € D and a closed point ' €
7 HE) N (Mi<i<,Sing(G})) where G} is the transform of G; for each i.
Pick any system z such that (y, z) is a reqular system of parameters of
Re. Then we can find an exceptional parameter 3 at & such that

(1) 3 € K[z] and 37 'y; € Rer for alli,1 <i <,

(2) If Inve (E') = Inve(E) then there exists ¢; € K with 37 'y; —¢; €

Mg for all i.

The following lemmas are needed for the proofs of those theorems.

Lemma 11.3. The permissibility implies that the ideal I of the center
contains y; — ¢;, say =v;, with ¢; € Mg for every 1.

Lemma 11.4. (91, ,1,,3) is extendable to a base of I as well as to
a reqular system of parameters of Re and 37'y; € Re for all i.

Lemma 11.5. v/ = (37 'yy, - ,37'0,,3) is extendable to a regular sys-
tem of parameters of Re.

Lemma 11.6. If Invg(E') > Inve(E) then Invg(E') = Inve(E).
Moreover the transform E! of E; by m is equal to (§.Oz,q;) with g, =
3 %g; for all i and we obtain an edge decomposition of the transform
E' of E by 7 at the point &'

(11.1) S(E) = (ﬂ G(E;)) N s(F)

where F' is the transform of F by «.

Lemma 11.7. So long as £’ € Sing(E'") the exceptional parameter 3 of
Lem.(11.3) can be chosen from the polynomial ring K|z].
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12. NORMAL CROSSING DATA
From now on we assume that we are given a normal crossing data
I'= Ty, ,T)
in Z, called the NC'-data for short.

Definition 12.1. A blow-up 7 : Z' — Z with center D is called
permissible for I' if D is smooth irreducible and have normal crossing
with I'.

Definition 12.2. The transform I of I' by 7 of the above Def.(12.1)
is defined to be I" = (I'},--- ,I',,I", ;) where

(1) T% is the strict transform of T'; by 7 for every i,1 < i < s,
(2) I, is the exceptional divisor 7~*(D) of .

Remark 12.1. General agreement (1):
From now on the I'-permissibility is always imposed even
when it is not mentioned.
General agreement (2):

The ordering of the components of I" will be recorded
as the history of their creation. Thus it is important to
note that the new exceptional divisor is placed in the
last spot of the sequence I".

Theorem 12.1. Assume that a NC-data I' and a smooth subscheme
W are given in Z. Then there exists a naturally defined coherent ideal
F(W/T') in Ow such that

W' is normal crossing with T’

< F(W/F)g = wa

Definition 12.3. The ideal F/(W/I'), is the unique ideal satisfying the
following equality.

F(W/D)e </\dQW,£>

= (/\d_C(E/W) QW,&) (/\C(g/w) @i:&EWﬂFﬁéW 5W(I(FiaZ)OW.£)>

where d = dim¢W and ¢(§/W) is the number of the indices ¢ with
EcWAT,; £ W.

The following lemma is useful in many inductive steps.
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Lemma 12.2. (called “denominator lifting”) Compare E = (J,b) with
E = (J,m) for some m > b. Then, after any finite sequence of per-
missible blowups, their transforms E' = (J',b) and E' = (J',m) by a
I’-monomial factor Q in their ideals. Namely J' = QJ' at every point
of Sing(E"). Here I" denotes the transform of I

Theorem 12.3. Assume that E = (J, b) has locally T'-monomial J

everywhere in Z. Write J = [],c,<,J, de where J, is the ideal of T,

mn OZ Then there exists a_ canonical sequence of permussible blowups
. 7 — 7 such that Sing(E) = 0 with the transform E of E by 7.

The “Canonical Procedure” is as follows.
(1) Let T' = (I'y,- -+ ,I'y). For each nonempty A C [1, s], we denote
( ) aEAF and J(A) = ZaEA da
()LetSo()—{ACls‘a )>b and D(A) # 0 }.
(3) Let S1(E) = {A € Sy(E) | |A] = ME)}
with A(E) = min{|A] | A € 80( ) } where |A| is the cardinality of A.
(4) Let Sy(E) = {A € Si(E) | 0(A) = 6(E)}
with 6(F) = max{c(A)|A € Si(E)}.
(5) Let x(E) denote the cardinality of Sy(E).
(6) The set Sa(E) has a lexicographical ordering by means of the
given ordering in I" itself.

Now choose the lexicographically smallest member B in Sy(E) and
take the blowup with center D(B). This process will terminate after a
finite number of repeated applications.
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13. CLEANING IN THE CASE OF p > 0

Recall the edge data of p(E): vy = (v, ,¥r), g = (g1, .g») With
g = y¥ + ¢ and with ¢; = p% for 1 < <r where e; > 0.

Lemma 13.1. . Let R(N) = p"(R¢) with N > 1. Then Rg is freely
generated as R(N)-module by

(13.1) y*g°2" with o € Zy, B € Zy and v € Ly™"
where 0 < oy < qr, @b + o < PV, Vk,v; < pV, Vj.

Definition 13.1. Let ¢ = (¢1,- -, ¢.). For an integer ¢ > 0 we define

QN(C)b = Z y*g°2" R(N), and

(13.1) and B-g<c

On(c)f = > y*g°2" R(N) = R— Qn(c)’

(13.1) and B-g>c

Pick and fix z such that (y, z) is a regular system of parameters of
R¢ including those edge parameters y of p(F£).

Definition 13.2. Write h as k> + hf with b’ € Qn(c)” and h* € Qn(c)*

(which are both automatically “belonging to” Ry, not only to the com-

pletion R ). We then define (g, N(c))-cleaning to be the map h +— h’.
If h* = 0 then h is said to be (g, N(c))-cleaned .

Definition 13.3. The g; is a homogeneous element of degree ¢; = p©
in p(E) C gru(R) for every i. For any homogeneous element h of
degree ¢ in gry(R) the (g, N(c))-cleaning of h will be called (g, N),-
cleaning or (g, N)-cleaning for short. For instance the (g, N)-cleaning
of ¢, = g; — y}" will mean the (g, N(g;))-cleaning.

Theorem 13.2. Any given edge generators g of p(E) with g; = y{' +¢;
can be modified into another edge generators g' of o(E) with gZ-T =
Y% + € (having the same y) in such a way that € is (g1, N')-cleaned for
every i,1 < i <1 in the sense of Def.(13.2).

The modification of the theorem is obtained by repeating r-times
cleanings of the kind of Def.(13.3). After the first cleaning the new ¢;
stays to be cleaned all the way to the end. After the second the same
for the new (g1, g2) and so on.

Definition 13.4. We say an edge data {y, q, g} is (IV),-cleaned if ej =
¢; for all 7 in the sense of Th.(13.2).
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Theorem 13.3. Pick any integer N, say > >, ...€;. We are given
edge data {y,q,g} for p(E) at & which are “(N).-cleaned”. Let m :
7' — Z with center D > & be permissible for E. Pick a closed point
¢ e 7 1&) N Sing(E') such that Inve(E') = Inve(E). Choose an
exceptional parameter 3 at & such that 3 € K[z], say 3 € z. Then the
transformed edge data

(7w — g3 Mg 1 < i <r}
of p(E') according to Th.(11.2) with Lem.(11.7) is necessarily (N, -

cleaned where z' is an appropriate transform of z by w. For instane 2’
is a reqular system of f parameters of

Spec(K[3 ™' (2 \ 3),3])
at the projection of
In short the transforms of the “clean” edge data stay

to be “clean” at the points where “Edge Invariants” are
unchanged by the permissible blowup.
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14. I-TRANSVERSALITY

At a closed point ¢ € Z, we may be given a specific system of param-
eters of Re, say w = (wy,--- ,w,). For instance w could be a system
of edge parameters y of p(E). On the other hand we are given the
NC-data I' created by earlier blowups before the selection of w.

Definition 14.1. We say w is I'-transversal at £ if w can be extended
to a regular system of parameters z = (w,v) of Re in such a way that
v contains a generator of the ideal of every one of those members of T"
which go through the point £.

In the following theorem we make use of “induction hypothesis” on
the dimensions of ambient spaces for the resolution of singularities ap-
plied to such ideals as F/(W/I") of Def.(12.3) and Th.(12.1).

Theorem 14.1. Given parameters w extendable to a reqular system
of Re, there exists a finite sequence of blowups m : Z' — Z, globally
successively permissible for E and ', such that the transform w' of w
is I'-transversal at every closed point & € 7= (§) where Invg(E') =
Inve(E). Here I' is the transform of I' by m and E' is that of E.
As for the choice of the transform w' of w we make use of exceptional
parameters and parameter transformations in the manner of Th.(11.2).

The locally defined ideal F'(W/T") can be extended globally to Z
where we do not concern the loss of its property away from & with
respect to I' in the sense of Def.(12.3). The induction hypothesis is
used inside the strict transforms of each component of the NC-data,
one after another in the order of the history of creation. The point
is the transversality becomes automatic with new exceptional divisor
after a certain finite number of steps.

Corollary 14.2. The theorem is applicable to edge paramerters y of
o(E). Therefore it is always enough to work with resolution problems
under the assumption that the edge parameters y is I'-transversal.
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15. I'~-MONOMIALIZATION

Consider edge data of p(E) of Def.(10.1) together with the edge
decomposition of Th.(10.2), say

where g; =y +¢; and F = (I,¢), orde(I) > c.

Consider another ideal exponent H = (h,d) in addition to E. Using
an inductive method on “edge invariants”, we can prove

Theorem 15.1. There exists a finite sequence of blowups, say 7 : Z =
Z, globally permissible for E and H (and also for T as always), which
has the follpwz’ng properties.

Letting E and H be the transforms of B and H by 7 respectively,
we can express H = (h* 4+ ht,d) in such a manner that at every closed
point & of #=1(§) N Sing(E) with inve(E) = inve(E),

(1) the ideal h' is contained in

> 9°Re

BEZy with Zlgigr Bigi>d

(2) the ideal h* of H* = (h*,d) is locally generated by a [-monomial
where I' denotes the transform of I by 7, and
(3) in the sense of infinitely near points we have the equalities

S(ENH); = S(ENHY); = §(ENH);
where ENH denotes the transform of ENH by 7.

A proof is basically by “denominator lift” Lem.(12.2) to which we
apply the strategy Def.(10.2) of “Inv” induction. But there is one
important care-taking that is to spin away any summands of the type
h' from the initial terms whenver these appears. (Or, we may us (g, N)-
cleaning of the type Def.(13.3) in each step.)

Definition 15.1. The expression of H by means H* and H T as above
will be called I'-monomial E-division of H at &'.

Corollary 15.2. Let p(E)(a) be the homogeneous part of degtee a of
p(E) for E as above and define the ideal exponent

F(a) = (I(a),a) with I(a)={f € p(E)(a)|orde(f) > a}
Pick and fix any integer N > ¢;,Vi. We then claim there exists 7 :
Z — Z such that simultaneously for every a < N we have the I-
monomial E-diwision of E(a) at €, say E(a)* and E(a)t, in the sense
of Def.(15.2) having the same property as H* and H' of Th.(15.1),
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16. /7-EXPONENTS

Recall that we had
(1) the edge parameters y = (y1,- - , ¥r)
(2) the edge generators g; = yf'+e¢; where ¢; = p® and orde(€;) > ¢;
for 1 <i<rwhere)<e; <---<e,.

Let us observe that for each 72,1 <7 < r, y; can be replaced by a unit
multiple and accordingly ¢; by its ¢-th powered unit multiple. Also
that y; may also be replaced by vy; — ¢;, usually with ¢, € M2, and
accordingly €; by € + ¢/

Definition 16.1. A /%-exponent G in Z is expressed as (g || /?) locally
at each point £ € Z with g € Oz¢ up to the following equivalence

relation among the g. The equivalence relation is defined with reference
to the given power g = p°®, 0 < e € Z, as follows:

(16.1) &M/ = (@) /1) <=
3 a pair of elements (u,v) € Oy¢>
such that g(1) = ulg(2) — v? where u™ and v? € Ogzy.

Definition 16.2. For a reduced irreducible subscheme D C Z with its
“generic” point ¢ and for a given G = (g || /9) of Def.(16.1), we define

ordp(G) = HE??R { ordc(u'g — v?) }
u”lﬁ)GRC ‘
— — 1
max { orde(g — %) }

Remark 16.1. Unlike the case of ‘ideal exponents” we sometimes need to
examine points n € Z with ord,(G) < ¢q. Refer to Def.(2.1), Def.(6.2),
Eq.(6.2), Th.(7.1) and Def.(16.2).
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In the following two examples we show two new phenomena that we
must keep in mind in dealing with Zariski topology of /9-exponents.

Ezample 16.1. (Generic-Down Pathology)
Let Z = Spec(K[z,y]). Let ¢ = p® and s = p° with integers e >
¢ > 0 and p = char(K). Consider D = Spec(K[z,y]/(z)K|[z,y]) and
(gl /%) = (29(y — a)* || /%) for every a?/* € K. Thus we have

ordp(g|| /?) = q while ord,(g|| /?) = g+ s for all closed

points n of D.
Observe the same phenomena for g = g(z,y)%® with any polynomial
g and also for a finite sum of such.

Ezample 16.2. (Generic-up Pathology)
Pick 5 variables (z,y,z,w,t). Let Z = Spec(K|z,y, z,w,t]) and n =
(x,y,z,w) € Spec(Z). Let ¢ = aP + ty? with p = char(K) and let
¢ = (¢,2,w) € Spec(Z) which is a prime ideal. Let g = 2P + wPtl.
Then for G = (g || /?) have
(1) ord:(G) = p+1 while ord, (G) = p although 7 is a specialization
of (. Thus special points can have smaller multiplicity than the
generic point.
(2) Incidentally, if C' denote the closure of the point o = (2, w) then

(16.2) ord,(G) =p < ord:(G) =p+1
> ord,(G)=p < orde(G)=p+1, ¥E€CNZy
in the ordering from generic to special.

Observe that the point 7 is a “singular point” of the closure of the
point ¢ and that the residue field x,, is not perfect. (cf. Lem(17.3), Th.
(18.2), Th.(17.1) and Th.(18.1) of later sections.)
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17. BASICS OF ZARISKI /?-TOPOLOGY

In spite of some “pathological” behavior of orders of /9-exponents
with respect to Zariski topology in Z we have many useful results.

Let Z., denotes the set of all closed points of Z and the Zariski
topology of Z, is the one induced by that of Z. The specility of any
closed point is its residue field is perfect.

Theorem 17.1. Consider any G = (g|| /?) of Def.(16.1). For each
integer d > 0, we define the set

(17.1) Sing(G) = {n€ Zu | ordy(G) > d}
We then assert that this set is closed in Zariski topology of Z,.

Lemma 17.2. Let us pick any point n € Sing(g| /) N Za and also
a regular system of parameters x = (x1,--- ,x,) of R,. Let R(q) =
p°(R,) with ¢ = p° so that R, is freely generated as R(q)-module by
{ x> | o€ e(q) }. Write h =Y, hoa®™ with ho € R(q) and o € €"(q).
We then claim

(17.2) ordy(g|l /*) = min{ [a| + ordy(ha) | €'(q) > a # 0}
Moreover for each 0 # a € €"(q)
(17.3) if ord,(ho %) < ¢

(which can happen only if he € R(q) \ maz( R(q))) then
ordy(hea®) = |a| = 1+max{ m | Dif fg?" (hoz*) C M, }
and

(17.4) if ord,(hqx®) > q then
ord,(he x%) = ord,(hy) + |a| =

1+ |of +max{ 1| (szfé“%ha) C M, } =
1 +max{ 1| (Diffé’;;(()(a)(ha z®)) C M, } =
| +max{ m | Yicuey <D7L LIS D f £ (e a;a)) c M, }

Lemma 17.3. Let us pick a pair of points n and ¢ in Z such that 1 is
a smooth point of the closure D of  in Z. Then we have

(17.5) ord,(G) > ord:(G).

To be explicit, let us choose a reqular system of parameters u = (u,v)
of R, such that uR,, is the ideal of D atn. Let R, = K|[u]] denote the
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M, -adic completion of R, where K is a coefficient field containing K.
Let us write
(17.6) g = Z dop u®® with dy € K
ab
Then we have

(17.7) ordy(G) = min{|a| + [b] | depuv” & p*(K[[u]]) }
and
(17.8) ord¢(G) = min{|a| | 3b, day us” & p°(K[[u]]) }

Theorem 17.4. Let A be a positive integer. If orde(g | /?) = Aq for
a closed point £ € Z, then { n € Z | ord,(g| /) = Aq } is closed in Z
within a neighborhood of & € Z. It should be noted that the closedness
mn Z 1s much stronger than the same in Z,.

Theorem 17.5. Let D C Z be an irreducible subscheme and let A
be a positive integer. If ord, (gl /?) > Aq for all n € D N Zy then
ordc(g || /9) > Aq for the generic point € D.

Lemma 17.6. If £ € Z, and is contained in the closure of ( € Z then
we have

orde(g || /?) > ord:(g || /7).
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18. /9-PERMISSIBILITY AND /?-TRANSFORM

Definition 18.1. The singular locus Sing(g|| /9) of a /%-exponent is
the set {n € Z | ord,(g]| /) > g}

Theorem 18.1. The Sing(g|| /?) is closed in the Zariski topology of
Z. This closedness is stronger than the closedness within Z. in the
sense of Th.(17.1).

Theorem 18.2. If D is a smooth irreducible subscheme of Z then
ord, (gl /?) > ordc(g]| /?) for every n € D, where ¢ is the generic
point of D.

Definition 18.2. Let 7 : Z/ — Z be a blowup with center D. We say
that 7 (and also D) is called permissible for a /%-exponent G = (g || /9)
if D is smooth irreducible and contained in Sing(G) in the sense of
Def.(18.1). Here and as always, the permissibility is required with
respect to the given NC-system I' in the sense of Def.(12.1).

Note that D C Sing(G) means that every point of D (including the
generic point of D) is in Sing(G).
Here we add one more permissibility condition as follows.

Definition 18.3. We say that © with D of Def.(18.2) is strongly per-
missible at a closed point £ € D if furthermore orde(G) = ord.(G) with
the generic point ¢ € D.

This condition is strictly stronger than that of Def.(18.2) in general
because of the possibility of generic-down center.

Definition 18.4. The transform G’ of G = (g|| /%) by a permissible 7
of Def.(18.2) is defined as follows:

(1) For each closed point ¢ € Z’ with 7(¢') € D we let I be the
ideal of D at ¢ and pick any v € I such that IRy = vRg,

(2) and then locally at ¢ we define the transform G’ to be =
(vg]) /%)

(3) We then see that above definition is independent of the choice
of v due to the equivalence of Eq.(16.1) in Def.(16.1).

(4) For this reason the above definition of G’ is globally well de-
fined for all ¢ € 7=(D). For points of Z' — 7~1(D) the above
definition is naturally extended through the isomorphism of 7
restricted to 2/ — 7~ 1(D).

The permissibility can be extended for every LSB of Def.(6.1). Fol-
lowing Def.(6.2) words by words, we can define
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Definition 18.5.
S(G) = U,{ LSBs over Z[t] permissible for G[t] = (g[t] ]| /9) }

We then say that “Gy more singular than G,” if &(Gy) D &(G), and
we define equivalence by Gy ~ Gy < &(G1) = 6(Gz). Then G ~ G1NG,
will mean &(G) = &(G) N &(Gy).

Moreover the notion of equivalence can be extended to the mixed
cases of ideal exponents and /?-exponents as follows.

Definition 18.6. For a finite number of ideal exponents E; = (J;, b;)
with 1 <7 < ¢ and /%exponents G; = (g; || /%) with 1 < j <d,

(18.1) G ~ (ﬂ1§i§c Ez) N (ﬂlﬁjﬁd gj) —
S(G) = (M<ice 6(Ei)) N (Mi<j<a 6(G)))
In particular Sing(G) =(Ni<i<c Sing(E;)) N (Ni<j<a Sing(G;)).

Theorem 18.3. ( Ambient /?-Reduction Theorem ) Given a /?-exponent
G=1(gll /9 in Z, we let

q—1 bt
= Z(D@'ff?*g) T with b = (g —1)!
j=1

For any smooth subscheme W C Z, we let Ft = (IT Oy, b") which is
an ideal exponent in W. We let F = (gOw || /?) which is a /?-exponent
in W. Then F™NF is an ambient reduction of G from Z to W in the
following sense (definition):

Pick any t and any one LSB over Z[t| such that all of

its centers are in the strict transforms of W[t]. Then the

LSB belongs to &(G) if and only if it induces an LSB

in W{t] which belongs to S(FT () F).
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19. /9-DIVISORIAL FACTORS

Theorem 19.1. Pick a reqular system of parameters x = (z,w) with
z = (z1,-++,25) at a closed point & € Z such that those components
['; of T passing through & are the hypersurfaces defined by the ideals
(zi)Re, 1 <@ <'s. Then every /?-exponent G # (0| /?) is represented
as (2% f|| /%) with f € Re where & = (&, -+, &) with &; = orde,(G)
for all i where (; is the generic point of T';.

Remark 19.1. The monomial 2% of Th.(19.1) is unique up to a unit
multiple in R¢ and hence the ideal Pe = 2%Ry is locally uniquely de-
termined by G at . Moreover this ideal P is the stalk at £ of a global
coherent ideal sheaf P within the domain of definition of G.

Definition 19.1. The above monomial 2% of Th.(19.1) will be called
[-maximal divisor of G at £&. Write & = ¢ + 7 in such a way that
0 < < q, Vi, and call 29° the ¢I'-factor and 27 the qI'-cofactor of G
at £&. The global ideal P will be called I'-mazimal divisor of G, denoted
by P(G). Moreover we have a coherent ideal B with stalks B¢ = 2° R
and its g-th power B? will be called the gI'-factor of G. The ideal sheaf
B~?P will be called the ¢qI'-cofactor of G.

Definition 19.2. The qI'-cofactor z7 will be often written as v” with
the subsystem v C z consisting of exactly those z; having ~; > 0.

Definition 19.3. Let us write G = (P f|/9) with the '-maximal
divisor P, which is locally P = 2% of Th.(19.1) at a closed point &.
Such f will be called residue of G at £&. We define

(19.1)  resorde(G) = maz{orde(f)| all residues f of G at &}
When a residue f satisfies the equality resords(G) = orde(f) we call f
a ['-residual factor or residual factor of G at &.
Definition 19.4. We define
(19.2) G = (P 'gll/9

with I'-mazimal P of G = (g /9),

where g is chosen to be divisible by a generator 29°+7 of P locally at
€. (cf. Th.(19.1) and Def.(19.1).) We will call G the checked associate

of G.
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20. STANDARD abc-EXPRESSION OF /?-EXPONENT

Assume that we are given a /9-expnent in Z, say G. Then we need
to choose specific parameters and detailed expressions of G in terms of
its important components. There are certain common features in the
pattern of their expressions. Therefore we want to set their versatile
standard form which we can later refer to.

Remark 20.1. Locally at £ we choose a system of parameters z which
consists of the ones defining those components I'; C Z of the I" which
are passing through the point £ € Z. We then extend z to a regular
system of parameters © = (z,w) of R¢ in which the choice of w may
be free or may be contingent to the specifics of the given situation. In
particular when we are dealing with a specific blowup 7 with center D
then we may or may not require that the ideal I(D, Z)¢ be generated
by a subsystem u of x. However as for the choice of z we should recall
the universal permissibility of = with the NC-data I so that the choice
of z is not affected by the choice of permissible blowup so long as we
focus our investigation to local problems at the given point £ € Z.
Moreover, depending upon G locally at & we choose a subsystem v of
z and write z = (v, w) as is done in the definition below.

Throughout this paper we will be using the following standard form
of expression of any given /9-exponent G, which we will call abc-expression
of G at the given point . .

Definition 20.1. We define a standard abc-expression of a /9-exponent
G at a given closed point £ € Sing(G) as follows:

(20.1) g = (gll/?)

with g = 22g = 21Pv%
where 22 is the maximal I-factor of G, 29 is the maximal gI'-factor and
v is the I'-cofactor with 0 < ¢; < ¢ for all j in the sense of Def.(19.1).
Moreover g is a residual factor so that orde(g) is equal to resorde(G).
Here the parameters x = (z,w) is chosen in accord with Rem.(20.1),
while the partition z = (v, w) is determined by the equality 2 = 27Pv°.

As for those important numbers a, b and c, they will be named
differently in accord with the specific needs. When we are dealing with
many different /%-exponents simultaneously we need to choose different
naming for the numbers a, b and c.
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21. COTANGENT p-FLAGS

We introduce the notion of “cotangent p-flags” for an ideal I C R,
especially a principal ideal I = gR¢ with g € M. The notion is of local
nature at a given closed point £ € Z and is determined by the wnitial
of the ideal I at . The initial means the re-module (I+ M) /M
with d = orde(I). Throughout this section the residue field x¢ will be
assumed to be perfect.

Remark 21.1. The cotangent p-flags of I at £ are written as a system
of re-submodules of M /M2 C gre(Re) as follows:

(21.1) { Le(L,a),p, 1 <a <1} with e, € Zy
which we may write L¢(I,a) = L(I,a) = L(a) for short.

They are characterized by the following properties:

(21.2)  (0)=L(0) & L(I,1) &---C L(I,l) C L= M/M¢?

subject to the following conditions.
(1) We have 1 <p® < --- < ]6961 where p < d = orde(I)
(2) Ilf g€ I and 0 € Dif fé;/pK have the following property

(21.3) ordg(0(g)) = p° and @ € ing(9(g)) + re[L(D)]

where e, < € and 0 # w € M¢/MZ, then there exists an index
a such that e, < e and w € L(a).

(3) for each a,1 < a <, the ke-module L(a)/L(a— 1) is generated
by the images of those @ € L(a) C M¢/M for which there exist
o€ Dz‘ffggga) and g € I satisfying Eq.(21.3) with € = ¢, so
that b =a — 1.

The cotangent p-flag of an element g € M, will mean that of the
principal ideal I = gR,. For any f € M, such that ord:(g — f) > d =
orde(g), f and g have the same cotangent p-flags.

Remark 21.2. Here is a list of elementary properties of the cotangent
p-flag of an ideal I at £&. We only consider the nontrivial case with
M¢ D 1 # 0 with orde(I) =d > 0.

(1) Let € be the smallest non-negative integer such that

(21.4) (Difsse20r + M) gyt o,

We then have € = e; and the module Eq.(21.4) is equal to
P (L(1)). In this case the condition Eq.(21.3) can be replaced
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by a “stronger” one in which we require
. d—p6
(21.5) dgel and EI(?EszfRE/K
such that w?" = ing(9(g)) and orde(d(g)) = p°

Here € = e;. But in the cases of a > 1 this condition can be too
strong to produce the whole L(I,a)/L(I,a —1).

Ezample 21.1. Consider I = gR¢ with g = z; + [[,c,c, i in
which L(1,1) = >, o, keZi and L(1,2) = L(I,1) + KeZpyr.
Note that w = Z,;; does not satisfy Eq.(21.5). (Z; = ing(x;).)
(2) If d = p® with the maximal index [ we then have
(21.6) rank,, (L(1,1)/L(I,1 - 1))
= rank. (I + ke[L(1,1—1)]/ke[L(1,1 = 1)]).

In particular when I = gR this rank is equal to 1 thanks to
the perfectness of k.

Definition 21.1. We say that ¢’ is cotangentially subordinate to g if
every member L(g’,b) of the p-flags of ¢ at £ is contained in some
L(g,a) of the p-flags of g at £ with e, < e,

For instance, pick g € I and 0 € Diffggﬂ’g) such that orde(0g) = p.
Then 0g is cotangentially subordinate to g.
Theorem 21.1. Let | be the last index of Eq.(21.1). We then have
(21.7) I CrelL(I,1)] where I=(I+ M) /M
Moreover L(I,1) is the smallest having this inclusion property.

The theorem is proven by using the following lemma.

Lemma 21.2. Let {L¢(I,a), p°, 1 < a < [} be the cotangent p-flags
of Eq.(21.1). Then for each a we have

. d—pea .
(21.8) ordg(DiffR(E/Kp )]) = pce
and
. . d—npca
mg(szfR(g/Kp )I) + ke[L(I,a —1)]
= ke L(I,a) + kKelL(I,a—1)]
Recall that ing(J) = (J + M) /M with v = orde(J) as always.

Definition 21.2. A cotangential base of exponent e, of I at £ is by
definition a system w(a) of elements w(a); € Mc/M¢, which induces
a free base of the ke-module L(I,a)/L(I,a — 1). A regular system of
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parameters x of R¢ will be said to be cotangential of I at & if inex
contains a cotangential base of I of exponent ¢, for all a,1 < a <.

Definition 21.3. We have ¢ = p® and ¢ < d = orde(I). Then define
(21.9) leo(I) = maz{a|Ie, <e} and leye(I) = maz{alla} = ¢
with reference to the p-flags Eq.(21.1).

(1) l¢,(I) may be written as £,(I) or ¢(I) for short.

(2) lep+ (1) may be written as £+ (1) or Le+ (1) or £4(1).

(3) Keep in mind that we always have p® < d.

(4) And then define
(21.10) Ly—max(I) = L(1,4,) with , = leq (1)

and
L[pﬂ,mm(]) = L(], €p+) with fp+ = €§,p+ (])
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22. p-FLAGS OF /9-EXPONENTS

We will refer to the notation of /%-exponent G and its abc-expression
(22g || /9) with 22 = 2%Pv7 in the sense of Def.(20.1), with gI'-cofactor
v” and residual factor g with reference to Rem.(19.1), Def.(19.1) and
Def.(19.3). As for the choice of local parameters we refer to Rem.(20.1).
(22.1) r=(z,w) with z = (v,w) and v = (v, , V).

For the sake of notational simplicity, we sometimes write 27 for o7
meaning that + is extended from Z{ to Z§ by placing zeros for those
components corrresponding to w.

Remark 22.1. Given G = (2%Pv7¢g||/?) we examine the following two
cases of applications of the p-flags. (Refer to Eq.(21.1) and Eq.(21.2).)

(1) The case of the ideal I = gR, with a residual factor g of G.
(2) The case of I = v?R, with the ¢gI'-cofactor v” of G.

Their p-flags have different characters and must be treated differently.
The character concerns with the following uniquness question. Note
that the case (2) is up to a unit multiple onto v, while the case (1) is
up to an addition of v to g with ¢ € R.. Here and later as well, v
denotes the g-supplement of v” in the following sense.

Definition 22.1. We have a = gb + v € Z§ with 0 < ~; < ¢,Vi. Then
the g-supplement of v is the unique element v* € Z; such that

. {q—%' if v #0

F — where 1 < j <s.
K 0 if otherwise ==

In other words a++* =0 mod (¢) and 0 < v; < gqforalli,1<j<s.

Note that having v as € Z{ we have 0 < 7; < ¢, Vi, and hence
0 < 7; < qVi. Here t is the length of v while s is that of z. In the
manner of Def.(22.2) ~* is g-supplement of 7 as well that of a.

Recall ¢(I) of Eq.(21.9) and Ly—ma () = L(I,4(I)) of Def.(21.3).
We will use different symbols for the residual and cofactor cases.
(22.2) L(g,a)" for L(g,a)

and Lq—maz(9)"*" for Lq-maz(f)
with understanding that g is a residual factor of the given G.
(22.3) L(vY,a)®’e for L(v7,a)
and Ly maz (V)7 for Ly maz(v7)

with understanding that v” is a qI'-cofactor of G.
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Remark 22.2. In the cofactor case the two modules L(v7,a)/* Va,
and Ly maz(v7)7% are independent of the choice of gI'-cofactors v7.
Therefore we will rewrite

(22.4) L(G,a)®’e to be L(v7,a)®/®
and Ly—maz(G)®7* to be Ly o (v7)070

However in the residual case L(g,a)™* Va, and L, a:(g)"*" depend
on the choice of g.

Remark 22.3. Consider the following condition on j for each a.
(22.5) e(j) = max{ e € Zy | p° divides v; } < eq.

where 1 < j <tand 1 <a < [. Since we have 0 < 7; < ¢ for all 7,
the re-module L(v7,a) is generated by those ing(v;) with j satisfying
Eq.(22.5). Note that if v is replaced by the v* according to Def.(22.1)
all the results remain unchanged because of 7; = ¢ — 7;,Vj.

Lemma 22.1. For every index a,1 < a < I, L(G,a)®’® is uniquely
determined by G and Ly—ma:(G)°7 is generated by {ing(v;) |1 < j <t}
where v = (vy, -+, V).

About the residual factors we should refer to Eq.(19.1) of (19.3).

Lemma 22.2. Pick any two presentations

G= (2P f|/7) = ("0 gll /)
Then there exists b € Re such that f — g = b0,
Remark 22.4. A residual factor g of G is replaceable by any f = g+b%v""
with b € Re so long as orde(b?) > d — |y*| with d = resorde(G).
Such a replacement can change not only ing(g) but also L(g,a)".

However we see that for all @ with p® < |v*|+¢ the module L(g, a)"+
Ly—maz(G)°?® is independent of the choice of g by Lem.(22.2).

Lemma 22.3. Pick any residual factor f of G and write f =) flx*
with f, € Re in terms of the parameters x = (w,v,w) of Eq.(22.1)
where 0 < «; < q,Yi. If fo = 0 for ™ = 07", then for every b € R
such that orde(b?) + |v*| > orde(f) = d > 0 we have
(22.6) L(f —bW" a) D L(f,a)

for VYa with p® < |v*| 4+ orde(b)q

which implies

L(f,a) = ﬂ L(f—b%""  a) for Ya with p* < |v*|4+orde(b)q

ordg (b)g=>d—|v*|
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and

(22.7) L fb)= () L(gb) for Vb withp™ <d
orde(g)>d
G=(el/?)

where Eq.(22.6) < Eq.(22.7) is proven by multiplication by v7.

Definition 22.2. With d = resord¢(G) = orde(f) we define
(22'8) Lq—ma:c(g)reSi = ﬂ LQ—max(f"i_qu’y*)TeSi

b GRg
orde (b)g=>d—|v*|

which is equal to a particular L, pq.(f) " when f is chosen according
to Lem.(22.3).

Definition 22.3. Furthermore we define
(22.9) Resig¢ 4(G) (07’ Resig(G) or Resi(g))

— qumax(g)rew+Lq7ma:p(g)wfa
= Lg-maa(f)"" + 32, kg ing(v;)
= Lgmaz(f +b077)" 4+ 37, kg ing(v;)
where f is any residual factor of G and b € R, is any such that
orde(b?) > d —|y*|. The independence on the choice of residual factors

f is due to Lem.(22.2) and to Rem.(22.4). Resi¢ (G) will be called the
residual cotangent q-module of G or residual g-module for short.

Definition 22.4. In view of Lem.(22.3) and by use of the notation of
Def.(21.3) we also define

(22.10) L[pﬂ_mam(g)?"esi _ ﬂ L[pﬂ—max(f + bqv'y*)
b €R§
orde (b9)>d—|v*|

Furthermore we define
(22.11) Resig j,+)(G) <= Resip+(G)

= L[pﬂimax(g)resi + Lq—max(g)cofa
= L[pﬂ_mm(g)”“ + ZZ Ke ing Ui)

(22.12) = N Lyt —mae(f + 6907+ ing (v) g
b ERé
orde (b7)2d—|v"|
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23. KEY PARAMETERS

Definition 23.1. We consider a /%exponent G = (g|| /) and write
its standard abc-presentation g = 29°v” f with a residual factor f. [
O A single element z or a system ¢ = ((y, -+, () with §; € M, will be
called a key g-parameter or a system of key g-parameters of G at & if
C=(C, 5 G) with ¢ = ing(() € M, /Mg induces a nonzero image
or re-linearly independent images inside the following module.

(23.1) RCe(G) = ReSi&q(g)/Lq—maw(g)wfa
= { Lg-mas(f) +Z@m } mod { Z’Dj/‘ig }
Refer to Resig 4(G) of Def.(22.9) and L, . (G)7.

Definition 23.2. A nonempty ( is called key [p*]-parameters of G at
¢ if their images are k¢-linearly independent inside

(23.2) RC¢,+1(G) = Resig y+1(G)/Lg—maa(G) ™
Refer to Resig ,+1(G) of Eq.(22.12) of Def.(22.10).

Remark 23.1. The key parameters will be used to prevent the occurance
of jumps of residual orders after permissible blowups. Normally we have
many more key [p*]-parameters than key g-parameters. Every key ¢-
parameters works effectively against creation of residual jumps while
key [p*]-parameters may not always do so.

Remark 23.2. Let us consider a blowup 7 : Z' — Z with a smooth
center D which is “strongly permissible” for G in the sense of Def.(18.3).
This means orde(G) = ordp(G) where ordp denotes the order at the
generic point of D. Pick a closed point ¢ € 771(¢£) N Sing(G) and
choose an exceptional parameter 3 for &', that means MRy = 3R
Let [ = I(D) = I(D, Z) denote the ideal of D C Z. Let I = I(D, Z);¢
denote the ideal in Re. If £ is understood, then we may write I for /.

Remark 23.3. In the Lem.(23.1) below, we follow the notation and
the assumptions of Def.(23.1), Def.(23.2) and Rem.(23.2). Moreover
assume that we are given a residual factor f of G so that resords(G) =
orde(f) = d > 0. We then consider the p-flag of f, say

(23.3) {Le(fra),p™ 1 <a<l}.

Pick a system w = (w(1),--- ,w(l)) such that w(a) is a cotangent base
of p-exponent e, in the sense of Def.(21.2). We are now ready to state
a lemma as follows.

Lemma 23.1. If f € I and ordg(37%f) > d then we claim:
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(1) We can choose w = (w(1), - ,w(l)) in such a way that
(a) W = ing(w) and every member of w is contained in I¢.
(b) Every member of 37w belongs to My .
(2) We write f = f, + f; in such a way that f, is a homogeneous
polynomial of degree d in Klw] and fy € M1 = Mg“ NI
(3) 3 is transversal to w in the sense that (3,w) is extendable to a
reqular system of parameters of Re. Moreover 3~ w, say w', is
extendable to a reqular system of parameters of Mg of which 3
s another member.
(4) 37%f, is a homogeneous polynomial of degree d in Klw'] while
37 is divisible by 3 in R;. We must have ordg (7)) = d.
(5) The p-flag of f, is equal to that of f as was defined by Eq.(23.3).
Letting f! = 37%f,, we can write the p-flag of f as follows.

(234) {37 Le(f.a), p, 1 <a <1}
with the notation of Eq.(25.3)

where 3 = (3 mod M?).
(6) f, is cotangentially subordinate to f' in the sense of Def.(21.1).

Theorem 23.2. Recall Rem.(25.2) wiith G = (207 f | /9) and a
blowup w : Z' — Z with center D which is “strongly permissible”
for G. . Assume that ordp(f) = resords(G). Refer to Def.(?77)
and Def.(23.1). According to Def.(23.1) let ¢ be a nonempty system
of key [pT]|-parameters of G at a closed point & € Sing(G) so that
(C,v) is a subsystem of a regular system of parameters of Re. Let
G = (2™ V7 f|| /) be the transform of G by m with qT'-cofactor v'7 .
Pick any closed point &' € 7=(§) and an exceptional parameter vy € M
for m at &. If we have

(23.5) Y| # 0 and
d = resorde(G) < resordgs(G') = d
then we must have

(1) & is not metastable for m and d = d
(2) v 1¢; € Mg for every j and
(3) 9~1C are key [p*]-parameters for G' at &'.

Theorem 23.3. If G has qI'-cofactor v¥ = 1 at & then there exists
a nonempty system C of key q-parameters of G at & in the sense of
Def.(23.1). Let us pick any system of key q-parameters ¢ = (¢, -+, Cx)
of G at & and any exceptional parameter v at a closed point & € 7=1(€)
by a fitted permissible blowup m : Z' — Z for G. If resords(G) <
resordg (G') for the transform G' of G by ™ we then have resorde(G) =
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resordg(G') and that y=1¢;, 1 < i < k, form a system of key q-parameters
of G at £'.

Theorem 23.4. Assume that we have a nonempty system of key ¢-
parameters ¢ = (Ci,-++,C) of G = (2P f||/9) at € € Z. Let 7 :
Z" — Z with center D and G' be the same as in Th.(25.2). Pick any
¢ € m1(&) and an exceptional parameter vy € M at &. If we have

(23.6) d = orde(f) = resorde(G) < resordgs(G') = d
then we have

(1) & is not metastable for m and d = d,

(2) v 1¢; € Mg for all j and

(3) the system (' composed of ¢! = 91 —c;,1 < i <k, is a key
q-parameters for G' at & where c; is the value of y~1¢ at &'

Corollary 23.5. Consider a sequence of fitted permissible blowups 7;
Zjyw — Zj for G; for j > 0 where Zy = Z and G;, 1s the transform
of G; by m; with Gy = G. Also consider a sequence of closed points
Eiv1 € mi(&5) N Sing(Gj41) with & = €. Under the same assumption of
Th.(25.4) on the existence of ¢ with respect to G at &, none of the ;14
can be metastable for m; if we have resorde, ,(Ge, ,) > resordg;(Ge,)
for all j. Moreover we then have resorde,,,(Ge,,,) = resorde, (Ge;) for
all j. Moreover the system C has its strict transforms (; in Re, which
are systems of key q-parameters in Z;.
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24. §-KEY PARAMETERS

We assume a /9-exponent G = (g || /?) with a standard abc-presentation
Eq.(20.1) of Def.(20.1). Namely

(24.1) g = 2%¢g with 2* = 2P¢°
with a residual factor g such that orde(g) = resord:(G).

Definition 24.1. An element ( € M\ Mg will be called a f-exact
parameter of G if we can find

(24.2) 0 € Diffy™) such that 0(g) = (*

where g, = p° with some integer 0 < ¢, < e so that 1 < ¢, < ¢q. If
moreover ( induces a nonzero image in RC¢(G) of Eq.(23.1) then ( is
called f-exact key g-parameter, or §-key paramter for short, of G at &.

Remark 24.1. The existence of the 0 with the equality of Def.(24.1)
is stronger than that of of Eq.(21.5) of Rem.(21.2), which is in turn
stronger than that of Eq.(21.3) of Rem.(21.1).

Theorem 24.1. The notion of §-key parameter of Def.(24.1) is in-
dependent of whether we choose p-flag of either g or v°q or g of the
standard abe-presentation Eq.(24.1) of G = (g || /7).

Theorem 24.2. When ¢ = p or e = 1, every key g-parameter ¢ is
automatically f-exact in the sense of Eq.(24.2) of Def.(24.1) at every
closed point £ € Sing(G).

Remark 24.2. Given a /%exponent G of together with a f-key parame-
ters (* of G at ¢ we will define an idempotent differential operator 0
as follows.

(1) Firstly choose a subsystem =@ of w such that y = (¢*, 2, @) is a
regular system of parameters of R¢. If ¢* is empty then we let
w=wand y=z.

(2) Let us then define d* to be the *-full idempotent differential
operator in Dif fr, /pe(Re)[zw) With respect to the parameters ¢t
in the sense of Def.(??7) and Def.(?7?).

(3) If ¢* = 0 then o* = 0.

Definition 24.2. We define
(24.3) g’ = *(g)

with the f-idempotent differential operator ?* of Rem.(24.2).
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Theorem 24.3. Assume (* # 0. Let K(Z) be the field of fractions of
Re or the function field of Z. Then

K@) = {6 € K(2)|o(¢) =0}
is equal to p°(K)(z,w) which is a proper subfield of K(Z). Moreover
with g* of Eq.(24.3) we have 0*(g*) = g* and g — g* € K (o).

Definition 24.3. The idempotent differential operator 9* obtained
above will be called f-idempotent differential operator of G associated
with the given #-key parameters (*.

Remark 24.3. With 9% of Rem.(24.2) let us define
(24.4) X = maz{ c € Z° | ing(2°) divides ing(d'g) }

where z = (21, -+, 2,) is the system of equations for those members of
I' which pass through &. Here if ¢* = () then the maz does not exist
or y = oo®. If ¢* is not empty then x € Z§. Always 22 divides 2X but
they do not coincide in general. We can write

(24.5) ¥(g) = 2X¢g° + g with ¢° € R
subject to the condition that we have
(24.6) orde(g®) > orde(g”) + X

= ordg(d*(g))

Throughout the rest of this section we will be assuming ¢* # 0.

Theorem 24.4. All the following three

(1) g =2*¢g of Fq.(20.1)

(2) g* ='g of Eq.(24.3)

(3) and 2X g° of Fq.(24.5)
have the same C* as their §-key parameters according to Def.(??) after
Rem.(??). Moreover if C* is sharp-ezact for any one of the three /9-
exponents as above then it is the same for the others.

Definition 24.4. Let us define the following /%-exponent
(24.7) G(1) = W1/ = (Pg®) /9

= (z®®u(E)*Pg() || /)
in the manner of Eq.(20.1) of Def.(20.1).

Remark 24.4. The I'-monomial zX of Rem.(24.3) is uniquely determined
by Eq.(24.4). Now let us choose the idempotent differential operator

(248) D(X) m DiffR.g/Pe(Rg)[C(ﬁ)w(ﬁ)*] ( Cf Lem. (??) )
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with respect to the parameters v(#) where v0* denotes the g-complement
of v(f) in z. Recall that for every ¢ € p®(R¢)[C(8), v(§)*]

D(X)(v(jj))‘gzﬁ) _ {U(ﬁ)&? if A= x(t)

0 if otherwise

Let us define the following notation:
Definition 24.5. DWW = D heen@naszy O

Remark 24.5. We have defined g(f) in Th.(24.3). and use it for the
study done later of the protostable structure of equations. Here we
define a further partial sum g° of g(f) and hence of g.

(24.9) g° = D(t)g with D(t) = DY(o%)

Note that ing(g°) = ine(g) and that g° is divisible by 2X in R,. Hence,
from now on, we specifically choose ¢° of Eq.(24.5) to be g° = z7Xg°
with g° of Eq.(24.9). Thus we have

(24.10) g° = 2X¢° with ¢° = g*

with ¢g* = 9%g in the sense of Eq.(??). Moreover it should be noted
that DX and 0 commute each other for they depend disjoint sets of
variables, the former of z and the latter of ((f). Hence Eq.(24.9) can

be written as g° = 2/(DWg) and D(}) is idempotent, too. Thus we
have

(24.11) g = g” = D(t)g’

Lemma 24.5. The definition of x by Eq.(24.4) produces the same
result when we replace g by g° in the equation Fq.(24.4).

We now go back to g* defined by Eq.(24.3) of Def.(24.2). We first
simplify the notation by writing

(24.12) g0 for g

and then define what will be called g-derivative of G as follows. Here
we are assuming (¥ £ (.

Definition 24.6. Let 22® be the I'-maximal factor of g(f) = g* of
Eq.(24.12) and let g(f) = z72®g®. We have

22 divides 229 which divides 2X

with reference to a of Eq.(??). We define the following /9-exponent:

(24.13) g =(s@ I/
with a(§) = qb(t) + c(f)
so that g(#) = 2*Wg(#) = 2°@u ()W g(4)
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which satisfy all the conditions to be a standard abc-expression in the
sense of Def.(20.1). Namely

(1) 22® is the I'-maximal factor, z¢*® is ¢I'-factor and v(f)°® is
gl-cofactor of G(f) with a subsystem v(f) of z.
(2) g > c(f); > 0 for all j.
(3) g(t) is a residual factor of G(f).
for which we should recall Th.(19.1), Rem.(19.1), Def.(19.1) and Def.(19.3).
We then have
(1) Let orde(g(8)) = d(#) and it is equal to resords(G(4)).
(2) We have df(g(#)) = g(t) and 2*®(g — g(#)) = 0 thanks to
Eq.(24.3). Indeed g — g(#) € K(0%) in the sense of Th.(24.3).
With the f-idempotent operator 9% of Rem.(24.2), the couple (G(£), 0%)
will be called g-derivative of G. Sometime G(f) alone is called the £-
derivative with respect to the f-key parameters ((f).

Theorem 24.6. Let (G(1),0%) be the f-derivative of G with respect to
the #-key parameters ¥ of G at & in the sense of Def.(24.6). Then the
same C* is also a system of §-key parameters of G(1) at & and the G(H)
is the f-derivative of G(#) itself with respect to the C*. Conversely any
system of §-key parameters of G(8) is also such a system of G although
G(8) may not be the §-derivative of G with respect to the new t-key
parameters.

Theorem 24.7. We always have
(24.14) d(t) = resorde(G(f)) < resords(G) = d

for the f-derivative G(8) of G at &. The difference of the two is |a(f) —a|
in the sense of Eq.(24.13).

In the examples below we will follow the standard abc-expression in
the sense of Eq.(20.1) with specified symbols.

Ezample 24.1. (Case: (¥ # ) Let us consider the case of ¢ = p = 2
and G = (g /%) with b = ({v; + w?)vy so that 22 = v® = v; and
g = (v +w?. In this case ¢* = (¢;) and GO = (g0 /9) with g0 = (v,
209 = 207%0 = ¢? and v0® = 1. Note that ing(g) # ing(g0).

Example 24.2. (Case:(*® = @) Let us consider the case of ¢ = p = 2

and G = (g]| /%) with b = (z1v; + v + w})v; so that 22 = v° = v; and

g = 2101 +vf +w?. Also g* = ¢. In this case (" = () and GO = G, while
G(1) = (2"Wg(1) || /) = (z""Wo(1)* Vg (1) || /9)

where 220 = p2] qu(l) =, v(1)*D =1 and ¢(1 ) = 2, +v}. Moreover

G(2) = (2"@g(2) || /1) = (2" Dw(2)Pg(2) || /%)
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where 242 = 202, 292 = 2 (2)°® = 2z, and g(2) = 1. Note that

ing(g) = ing(g(1)) = ing(g(2)) while h # g(1) # g(2). We have G(#)
is equal to all G(k),k > 2, but it is different from both G and G(1).
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25. /9-STRATIFICATIONS

We will be assuming that K is algebraically closed. We are given
a /9-exponent G = (g|| /9) in Z and a Zariski-closed subset Z* of the
ambient scheme Z, We view Z* as a closed reduced subscheme of Z. We
then have a stratification of Z* by virtue of Th.(17.1) in the following
sense:

Definition 25.1. An G -stratification of Z* is an expression of a finite
disjoint union Z* = U; Z(i) such that

(1) the Z(i) are smooth irreducible locally closed subschemes of Z
which are called strata, and
(2) ord,(G) is constant for all n € Z(i) N Z for each i.

Remark 25.1. Among all possible G-stratifications of a given Z*, there
exists a canonical one which is constructed as follows:
Let us first define

(25.1) S4(G,2*) = {ne Z|ord,)(G) > d}
which is a closed subset of Z}; = Z* N Zy by Th.(17.1).

For every integer d > 1, we let T'(d) denote the closure in Z* of the
subset Sq4(G, Z*) of Eq.(25.1). First of all let us note:

(1) For every d > 1 we have T'(d) N Z} = S4(G, Z*) because the
latter is closed in Z7;.

(2) S1(G,2*) = Z}. In fact for every n € Z¥ we can find g € R,
such that h—g? € maxz(R,) because the R, /max(R,) is perfect.
Therefore we have (g || /7) = (g — ¢ || /9).

(3) Hence T'(1) = Z*.

We let dy = min{d > 0|S4(G, Z*) # Z}} and choose C(1) to be the
collection of connected (and then smooth irreducible) components of
Z* — (Sing(Z*) UT(dy)). This C(1) will be the first set of canonical
strata. Choose the next set of strata to be the collection C(2) of the
connected components of T'(dy) — (Sing(T(d1)) U T(d2)) where ds is
the smallest integer > d; such that T'(dy) # Sing(T(dy)) U T(dy).
Let S(1) = (Sing(T(d1)) UT(d>)). Let C(2) be the collection of the
connected components of S(1) — (Sing(S(1)) UT(ds)) where dj is the
smallest integer > dy such that S(1) # Sing(S(1)) U T(ds). Then
let S(2) = (Sing(S(1)) UT(d3)). Repeat this process until we reach
S(1) = 0. The canonical stratification of Z* with respect to G is then
the union of those collections C'(j),j = 1,2, -, which is altogether a
finite collection.
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The most basic case is Z* = Z. However when G is given in combina-
tion with another singular object such as an ideal exponent F = (.J,b)
in Z we often need to consider the case of Z* = Sing(E).

Remark 25.2. By virtue of Rem.(??) we have a canonical refinement of
any given G.-stratification in such a way that the NC-data I' is normal
crossing with every one of the strata of the refinement at every point of
Z in the sense of Def.(?77?). The existence of such a refinement is proven
thanks to the following fact. For every smooth irreducible locally closed
subset C' of Z and for the subsystem I'(C') of I consisting of those not
containing C, we find the smallest (an hence unique) nowhere dense
closed subset S of C such that I'(C) is normally crossing with C' at every
point of C'\ S. (See Def.(??) along with Rem.(??) and Rem.(?7).)
Then the final refinement can be obtained by descending induction
on dimensions of strata by repeated replacement of C' by C'\ S and
canonical G.-stratification of S. (Choose C' to be one of the biggest
dimension among the given strata having non-empty S at each of the
replacements.)

We consider a /%-exponent G in Z in the sense of Def.(16.1). Pick a
closed point £ € Sing(G).

On one hand we may choose a specific G;-stratification of Z in the
sense of Def.(25.1) and choose the stratum 7' containing £. This is
a kind of top-down selection method, while it is meritably global in
nature.

On the other hand we may take the set Sy; = Sy(&) of all those
closed points of Sing(G) at which the residual orders of G are equal to
resordg(G). This is a kind of bottom-up selection method. We have
a naturally defined locally closed subscheme S = S(§) of Z such that
Sa(§) = S(&)NZg = S(€)a. To be precise we first let C' be the closure
of Sy in Z and let B be the closure of (C'N Zy) \ Sy in Z. Then we
obtain S as being C'\ B. (Refer Th.(17.1).) We then let T" be the set
of smooth points of .S, which is a locally closed subscheme of S.

If the point £ is such that

25.2 resords(G) = max resord: (G
252 (0) = _max resordi(0)

then Sy () is a Zariski closed subset of Z,; and S is a closed subscheme
of Z.

When we choose any straiffication of Z by means of a /%-exponent
given in Z it is inevitable from encountering and hence we need to deal
with generic-up-down strata in the sense of Def.(77).

Let us review the example Ex.(16.2) of generic-up-down phenomena
of the /%exponent G = (h|/?) with h = ¢z + wP*! which is given
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in a 5-dimensional affine space Z = Spec(K|t, z,y, z,w]). Let € be the
origin at which orde¢(G) = p + 1. In the example, our S = S(§) turns
out to be Sing(G) which is 3-dimensional subspace. This is the closure
C' of the point 0 = (z,w). The order of G is p + 1 at every closed
point of S while it is p at the generic point o. S contains an irreducible
surface which is the closure of ¢ = (¢, z,w) with ¢ = 2P 4 tyP. Call
the surface F'. The singular locus of F'is a line which is the closure of
n = (x,y,z,w). Call the line L, and 7" = F'\ L is the smooth part of
F. The order of G is p+ 1 at every point of T'. It is also p+ 1 at every
closed point of L but it is p at the generic point 7.
The notable point of this example is that

we have S 2 F 2 L D & while
S s generic-down , F is not but L is

in the sense of generic-down subscheme defined by Def.(?7?). Also note
that, excluding a single exception L = Sing(F'), we find no other ir-
reducible curve of generic down type contained in F'. All these claims
follow from Th.(17.1) and Lem.(17.3).

The example Ex.(16.2) may be slightly modified as follows:

Example 25.1. Replace h by h* = h + ¢?™! + 2P Let G* = (h*||/?).
Then we get Sing(G*) becomes F' which is our new S(&). Every other
claim made on Ex.(16.2) holds true for the points within F'. Notewor-
thy point is that S(§) is not generic-down but it contains L which is
generic-down.
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26. RETRACTION AND PRIMITIVE OPERATORS

In the study of effects of permissible blowup upon singularities of
characteristic p > 0, if the centers are generic down type in the sense
of Def.(??). we must then deal with some problems of special nature.
Our tactics are to make use of those primitive and square nilpotent
differential operators of Th.(5.3) which are associated with local pro-
jection of the kind w : & € Z — A' in the sense of Def.(5.2) with
Eq.(?7?). Refer to Th.(5.1) and Rem.(?7?).

Let us now introduce the “general” notion of local retractions and
study its relation with primitive and square nilpotent differential oper-
ators.

Definition 26.1. A local retraction at £ € Z will mean

Definition 26.2. A local retraction r of Def.(26.1) will be called sep-
arable if t is the dimension of S at £ and the “induced morphism” is
locally separable at &. Note that the separability implies that S is re-
duced. A local reraction r will be called etale if the induced morphism
is etale at £ (i.e, it produces an isomorphism of completed local rings).

When local retraction r is etale at £ S is smooth and irreducible at
§. We also have t = dim,S.

(26.1) r:eScCZN A

which has the following properties.

(1) S is a locally closed subscheme and ¢ is a closed point,

(2) risa “smooth morphism” from an open neighborhood U of ¢ in
Z to an affine t-space A" = Spec(K[w]) where w = (wq, -+ ,w;)
is a part of a regular system of parameters of Re = Oz,

(3) r induces a locally finite morphism U NS — A’ so that ¢ is <
the dimension of S.

The symbol r will stand for the whole data of Eq.(26.1) called “local
retraction”, as well as for the “projection morphism” U — Af. This
may be called “projection” for short. The morphism S N U — A’
induced will be called the “induced morphism” of r.

Definition 26.3. Assume that we are given ¢ = p° in addition to a
local separable retraction r of Def.(26.1). Such will be the case when
we are working with a specific /%-exponent G = (g|| /7). We then define

(26.2)  B(q,r) = (p°(Ozpw))w] called the q-base algebra of r
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which is a sheaf of subalgebras of Oy . Its stalk B(g,r)¢ is equal to
p°(Re)[w] and is called the g-base algebra of r at £. We define

(26.3)  Z(q,r) = Spec(B(q,r)) called the q-base scheme of r.
Definition 26.4. Quite generally we define
(264) P(q,r) = HomB(q,r)(Oz‘U,B(q,r))

where Hom denotes the sheaf of B(g, r)-homomorphisms. It should be
noted that P(g,r) depends on ¢ and on r as “projection morphism”.
It does not depend on S. Note that P(q,r) is a finite B(g, r)-module.
We also define

(26.5) P*(q,x) = Plg.x)NDiff}

= {0€P(qr)|0(B(g,r)) =(0) }
Remark 26.1. Let us consider a “retraction etale” case. There then
exists a regular system of parameters (u, w) of R such that S is locally
defined by the ideal (u) R, and the projection morphism r is defined by

w in the manner of Def.(5.2). With such a choice of (u,w) we claim
the equalities with the symbols of the Eq.(?7?) of Def.(5.2) as follows

(26.6) P(qg,r)e = Plu/w) and P*(q,r)e = P (u/w)

Remark 26.2. Let V' be the open set of those points n € S at which r|S
is etale. Then choose an open subset U C Z such that V =U NS and
projection by w is smooth at every point of U. For notatinal simplicity
we assume that the same u generates the ideal 1(S, Z) at every n € V.
We then have the following consequences.

(1) For every closed point n € V' we have a regular system of pa-
rameters (u,w — w(n)) of R, with the value w(n) of w at 7.
There Th.(5.3) and Rem.(?7?) are all valid for (u,w —w(n)).

(2) We have p?(Oz)[w — w(n)] = p°(Oz)w] which is B(g,r,) with

the retraction
r,:n €S CZN\ A" = Spec(Klw — w(n)]
(3) For the B(q,r,) given, every primitive idempotent section 6(0),
of P(q, 1), has the form id—>" o) Lces () (6a)?u®8S") with 0, € R,

at 7 by Rem.(??). In order to have 6(0) = 5 we must have
0, = 1,Va # 0, and hence it is unique for a given u. However

5 depends on the choice of u withn (w)Re = I(S, Z), for the
given S. The dependence is shown by the following example.
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Ezample 26.1. Assume g < (¢ — 1) so that we have a € €(q)
with |a| = ¢. Let v = (vq,--- ,v,) be defined by v; = uy, u; =
v; + v1,Y¥j > 2. Then uf = 5 (u) while 60 (u®) = 1.

(4) In the “etale” case we then have
(26.7) B(g;r)e = 6(0)(Re) =
0,(Oz)e = Plg;r)(Oz)e = P*(q.r)(0)¢

where we define

P(q:r)7'(0) = { f€Oz|P(g,x)f = (0)}

The point of Eq.(26.7) is that the primitive idempotent §(0) is
not unique but its image is unique B(gq, ), so long as we fix r
as projection map.

Remark 26.3. Let us further examine the nature of ¢-base algebra
B(q,r) in the sense of Eq.(26.2), especially in the case of “ etale”
retraction r, B(q,r) is “separably and integrally” closed in Re. To be
precise we have the following

Lemma 26.1. With the same & € S C Z we pick any other etale
retraction v'. Then t’ is derived from r by composing the following two
types of parameter changes.

(1) The first type is the one with B(q,r') = B(q,r).

(2) The second type is the one with w,—w; € 1(S)e for all1l <1i <t,

where v’ (respectively r) is defined by w' (respectively w ).

In both cases, we can choose w* € B(q,r)" with w* = w' mod I(S)*
and we have

B(q7 I'*) = B((L I‘)
Definition 26.5. Consider various etale retraction
r:£e8ScZN\A

for a fixed S which is smooth at £. Then the g-base algebra B(q, r) does
depend on r as projectin morphism but the natural image of B(q,r)
into Re/I(S)Re is independent of the choice of r. This image will be
dnoted by B(S)¢. There exists a subalgebra of B(g, r); for any reference
r having an isomrphism onto B(S)¢ and it is often denoted by B(S)e.

Incidentally we also consider the special case with ¢ = 0 in which
case we should understand S = ¢ and A* = A° = Spec(K). When
t = 0 we will omit the symbol r from the notation, for instances P(q)
for P(q,r) and P*(q) for P*(q,r).
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Remark 26.4.
P(Q) = Hompe((')z)( OZ7p€<OZ) )
and

P*(q) =Plg) N Diff; = {9 €Plq)|(p°(Oz)) = (0) }
are global cohenrent sheaf on Z(q) = Spec(Oz). They are locally
free of ranks ¢™ and ¢" — 1 respectively with n = dim(Z). We have
P*(¢q,r) C P*(q) as a subalgebra determined by the projection map r.
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27. BOUNDING PULLDOWN BY OPERATORS

We go back to an arbitrary retraction, not necessarily “etale”, de-
noted by r : £ € S C Z N\, A" in the sense of Def.(26.1). Let
I(S) € Oy be the ideal of the subscheme S C Z. Recall that we
have the sheaf of primitive differential operators, denoted by P(g,r),
with respect to the retraction r by Def.(26.4). Tt is gloablly defined on
U even through “non-etale” points of S. We have the g-base scheme
Z(q,r) = Spec(B(q,r)) defined by Eq.(26.2) and Eq.(26.3), on which
P(q,r) is a coherent module.

we now introduce the way of bounding the pulldown effect on orders
of functions along S when we apply primitive and square nilpotent
differential operators.

Definition 27.1. We define
(27.1) Plar) =
ﬂ v—02>0 Ker (P(q7 r) - HomB(qm) (](S)(V), Oz/I(S)(V_G))>

where J®) denotes the k-th symbolic power of the ideal .J in Re, ie,

N (SRR )N E

p € mass(Jk)
with mass(J*) is the set of minimal associated prime ideals of J*.
(27.2) Psla:r) = Polg,r) NP (q,x) = Polg,x) N Diff7

The number ¢ can be any integer and it is called bound of degree pull-
down or pulldown bound for short. Incidentally —o may be called bound
of degree pullup or pullup bound for short.

Remark 27.1. When the pulldown bound o < 0, we have P, (g, r) maps
the unity 1 € Oz to I(S)=?). For ¢ = 0 in particular

Po(gr) = {0€P(gr)|0I(S)¥) C 1), v >0}
Remark 27.2. (1) Choose any u® = (uf.--- ,u?) such that (u°, w)

is a regular system of parameters of Re.
(2) For any choice of u° (which need not be in I(S)) we have
P,(q,r) = P(q,r) so long as 0 > (¢—1)*+1. In fact P,(q,r) C

P(q,r) C Dif fo, /(04w and this last p®(Oz)[w]-module is
generated by the elementary differential operators o a € e (q).
We always have 04 (I1(5)®) c I(S)@~1aD. Note |a| < (¢ — 1)°.
Theorem 27.1. We have
(1) Ps(q,r)e C Pr(q,1)¢ for all o <1 and
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(2) Py(q,r)e =P(q,1)¢ for allo > (¢ —1)* + 1.
(3) For every o < 0 we have no nonzero idempotent operator be-
longing to P,(¢q,r). 00000

Once again we go back to a “etale retraction” case in which we will
use symbol D instead of S, say

(27.3) r:£€DCZNA

In later applications with respect to a given /9-exponent G we often
choose a smooth irreducible subscheme D of a stratum S = S5(§,G)
which is the closure in Z of the set

(27.4) Sa = {ne€Zy ! ord,(G) = orde(G) }

Such an S is a reduced closed subscheme of Z, which could be singular
even at &, while D C S can be a center of permissible blowup for G.

At any rate for the above “etale” retraction we have an explict de-
scription of P,(q,r) for any given finite pulldown bound o as follows.
We choose a regular system of parmeters * = (u,w) of R¢ such that
D is locally defined by the ideal (u)R, and r is defined by w in the
manner of Def.(5.2). One notational convenience is used in what fol-
low. Namely any negative powers means “unit” for ideals and systems
of elements. For instance, if ¢ > 0 then (u)"“R = (1)R = R.

Theorem 27.2. Assume that v of Fq.(27.3) is etale retraction in the
sense of Def.(26.2). Pick (u,w) of Eq.(26.1) with D instead of S. Let
5 be the primitive differential operator sending u®¢ to ¢ for each
a € €(q) and ¢ € B(q,r) = p°(R)[w]. We then have the following
expression of the stalk of the B(q,r)-module P,(q,r) at &:

S acerto (@R 0 (5 (Re)lw]) ) ol
which is equal to

lal—o
(27.6) Z pe(I(D,Z),S)] ! [(pe(Rg)[w})éia)

aces(q)

where | x | denotes the smallest non-negative integer > *.
Corollary 27.3. We have the same result for Pk(q,r) as follows.
(27.7) Pylgr)e =

S oy acep (07 Re 01 (e (R[] ) )
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which is equal to

lal-o
(27.8) Z ,oe<](D,Z)§>} ! [(pe<R£)[w])5q(La)
(0)#ace(q)

Theorem 27.4. In the case of etale retraction r, there exist nonzero
idempotent operators {3(0)} contained in Py(q,r) if and only if o > 0.
Those 6(0) are all contained in Py(q,r). They are dependent of the
choice of a base u of the ideal I(D) while their residue chasses modulo
p°(I(D))Py(q,r) are all the same and uniquely determined by the base
algebra B(q,r)e C Re.

Let us next consider a general case of “separable” retraction r: & €

S C Z N\ A" = Spec(K[w]) in the sense of Def.(26.2). We have

P,(q,x) C Plg,x) C Dif fz/70)

which are modules over the g-base B(q,r) = p(Oz)[w]. The number
o is the pulldown bound in the sense of Def.(27.1). We now proceed
to examine their algebraic structure especially in the non-etale cases.

Remark 27.3. Locally at £ € Z we set the following notation for the
set of minimal associated prime divisors mass(I(.S)) of I(.9).

(27.9) Define the set P = {py,1 <k < u}
with all p, € mass(1(S)), dim(Re/p) = t, and
let p = NgPx

Ty, = Spec(Oz/pi) and T = Mi<k<y Tk = Spec(Oz/p)

which are defined within an appropriate open neighborhood of ¢ € Z.
Assume g > 0. For every integer v > 0 there exists an element h(v)
such that

(27.10) 0 # h(v) € K[w] such that h(v)p™) C 1(S)™)
whence we must have h(v) & py
because pp NKlw] = (0) for every k
Recall that the “induced map” S — A?! is finite and separable at &.

Theorem 27.5. Assume that pr > 0 in the notatin of Eq.(27.9). Let
t:&eT N\ Al be the retraction obtained from r replacing S by T but
keeping the same “projection morphism”. Then for every integer o we

have P, (q,r)e = Py(q,t)e and Pi(q,r)e = Pi(q, t)e.
Lemma 27.6. We have a natural birational homomorphism:

B(q.r)/(pr N B(g,r)) — Re/ps

for every py.
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Remark 27.4. Consider a retraction r which is separable in the sense
of Def.(26.2). We refer to the set of prime ideals {py, 1 < k < p} with
p >0 of Eq.(27.9) in Rem.(27.3). We then define retractions ty and t
from r by replacing S by T}, = Spec(Re/pi) and by T' = Spec(R¢/p)
with p = Ngpg. Let C(r) = Klw] \ {0} which is a multiplicative group.
Let K(q,r) be C(r)"'B(q,r) which is the field of fractions of Z(q,r).
Write C for C'(r) and K for K (r) for short. We then have the following
facts within a neighborhood of € € Z.

(27.11) C~'P(q,r) = Hompyy) <OZ,K>
C7'Py(q, 1) = {0€ C'P(q,tx) | O(C1py) C C'p 7}
C7'Py(q,t) = {0€ CT'P(g,t) |O(C'p") C Clp" 7}

It should be noted here that by applying C~! the prime ideals become
maximal ideals and hence their “symbolic powers” are the same as
ordinary powers. The same holds for the intersection of those primes.

Remark 27.5. We focus our attention to an affine open neighborhood
of £ € Z, suitably small. So let us assume Z = Spec(A) with a finitely
generated K-algebra A and also view p; and p as prime ideals in A.
We may assume B(q,r) = p°(A)[w] and r : Z — P = Spec(K[w]) is

smooth everywhere with w = (wy,--- ,w;). Let C = Klw] \ {0} in
accord with Rem.(27.4). Then we have
(27.12) For each k

Ju(k) = (u(k)y, - ,u(k)s) with C~tp, = (u(k))C1A
where s +t =n = dimg(Z). Let us define
(27.13) 3(0) = identity — > u(k)*6.),
0#ace®(q)

The operator §(0); is “primitive” in the sense that it is idempotent
and it annihilates all the monomials u(k)* with 0 # a € €*(q). There
by chinese remainder technique we can choose the parameters u =
(ug,- -+ ,u) in the following manner:

(27.14) uj € p C Re,Vj, and
u=u(k) of Eqs.(27.12) + (27.13),Vk.
We then define the following idempotent operator.
(27.15) R D
0#a€e®(q)

which makes a good sense in C7'P(q, t) of Eq.(27.11).
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Remark 27.6. With u of Eq,(27.14), we can have an open neighborhood
U of £ € Z such that
(1) For every k let V2 be the set of those points of U NT}, at which
the retraction ty is etale. Then V) is open dense in U N T}, for
every k. (Every separable finite morphism is generically etale.)
(2) We then have an open dense subset Vj, of V;? such that §(0) of
Eq.(27.15) is a primitive idempotent in P(q, ty) with respect to
the parameters u = u(k) at every point of Vj.
(3) For each such §(0) we define an ideal | C B(q,r) by

(27.16) | = {f € R,i| f5(0) € P(q,x).
We see that Spec(R¢/|Re) NVj, = 0 for every k.
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28. GENERIC DOWN THEOREMS

The theorems in this section are used in the study of generic-down
phenomena in the sense of Eq.(??) of Def.(??). It will be seen that
Ex.(16.1) is a simple but typical “generic-down” case. Indeed a general
“generic-down” phenomena is composed of such simple ones in a certain
sense that we want to clarify in this section.

Remark 28.1. Let D be a reduced irreducible subscheme of Z and as-
sume that it is a generic-down subscheme for a /9-exponent G = (g || /9)
in Z in the sense of Def.(??), that is

(28.1) 0 <1 = orde(G) < m = ord,(G)

where ¢ denotes the generic point of D and the equality for m is for all
n € DN Zy in accord with Eq.(?7).

Remark 28.2. Pick and fix a point £ € D N Z, such that D is smooth
at & and ord¢(G) = m. Then pick a regular system of parameters
x = (u,w) of R¢ which is subject to the following condition.

(28.2) (u)Re is the ideal of D C Z at €.

In later applications, D may be given as the center of a blowup
permissible for G as well as for the given NC data I'. If this is the
case we may require (u,w) contains z where z denotes a system of
parameters defining those components of I' passing through £. However
in the following general theorems it is important that no more than
Eq.(28.2) is imposed on our choice of x = (u,w) in search of invariants
and globaliation in dealing with generic down singularities.

We will write u = (uq, -+ ,us) and w = (wy, - ,wy). Write z =
(X1, ,2y) = (u,w) with n = s+t = dimZ.

The choice of (u, w) determines the following local “etale” retraction.
(28.3) r:£e€DCZN\ A" = Spec(K[w))

in the sense of Def.(26.2). Recal that we then have the ¢-base algebra
B(gq,r) in the sense of Eq.(26.2) and the operator algebra P(q¢,r) in the
sense of Def.(26.4). Recall its relation with the parameters (u,w) in
the manner of Eq.(26.6). We also have P,(¢q,r) with pulldown bound
o. Refer to Def.(27.1), Eq.(27.1) and Rem.(27.2).

We now proceed to state and prove the theorems and lemmas about
“generic down” phenomena. We know that Ry is a p®(R)-module freely
generated by {u®w?®, (ab) € €"(q)}. We then choose g of G = (g]| /%)
as follows. With repect to the (u,w) we have the *-full idempotent
q-operator 0* in the sense of Eq.(??) of Def.(??)). For the given G we
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can replace g by 9*(g). In fact 9*(g) — g belongs to p?(R¢). In effect 9*
annihilates all the g-the power terms and keeps the other terms with
respect to the variables (u,w). We thus have

(28.4) '(g) = Z dop? u®w®
(ab)een(q)
with dyog = 0 and d,, € R. We then have
m = ordg(0*(g)) = min{ |a| + |b| + orde(daw) ¢ }
and | = ord:(9*(g)) = min{ |a| + ord¢(dw) ¢ }

The numbers m and [ are thus defined and indpendent of the choice of
(u,w) so long as the condition Eq.(28.2) is satisfied.

In what follows for the sake of notational simplicity we assume to
have chosen g in such a way that 9*(g)g. With this g we proceed ou
reasonings from now on.

(28.5) A = { (ab) ] la| + ord (du)q < m}

Note that the set A is not empty because of the “generic down”
assumption [ < m.

Lemma 28.1. Pick any (ab) € €"(q) such that a # 0. We then claim
orde(dhuw®) = |a| + ord:(de)qg > m.
Therefore we must have a = 0 for all (ab) € A and
I = min{ord:(dow)q| (0b) € A}
It follows that we have | = Aq with an integer A > 0.

Lemma 28.2. We have m — 1 < q. Hence m 1is not divisible by q.
Lemma 28.3. We have | = Aq = ord:(dy? w®) for every (0b) € A.

Lemma 28.4. Pick any one (0b) € A and write w* = [],_,, w?j.
Then we have:
(1) There always exists at least one j with b; > 0.
(2) If b; > 0 then there exist integers e(b,j) > 0 and c(b,j) > 1
such that b; = c(b, j)p*®) and p fe(b, 5).
(3) If bj > 0 we have p°®) > m — [.
(4) If orde(dl,w®) = m then b has one and only one nonzero com-
ponent b; which is equal to p® .

Definition 28.1. With the set A of Eq.(28.5) we define

g dyp? uw® = E dop? w°

(ab)eA (0b)eA
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of which the last equality if by Lem.(28.1).

Theorem 28.5. The summand g(0) of g has the following properties.
(1) ord:(g(0)) =l = Aq with a positive integer A
(2) and Aq < m < orde(g(0)).
(3) There exists a nonempty finite set B of maps from [1,t] to Z
which has the following properties.

(286)  g(0) = > g(0)s with g(0)s = ¢5" [ w*®
BeB 1<i<t
where
(a) For every B € B there exists at least one i with (i) > 0.
(b) B(i) is not divisible by p for at least one pair (B,1).
(¢) q. is a unique power of p and we have ¢ > q. > m — Aq
(d) ¢s € I* and ordc(¢s) = A for every 3 € B.
(e) orde(g(0)g) > m for all § € B.

(4) We always have orde(g(0)) > m.

(5) Suppose we had orde(g(0)) = m. (We may not have the equal-
ity. See Ex.(28.1) below.) For 5 € B with ords(g(0)g) = m we
have one and only one index k with B(k) # 0 and (k) =1, so
that gs = ¢t wi.

Let us next define
(28.7) AT = { (ab) ‘m < la| + ord(du)q < | + q}

Note that this set AT could be empty unlike A. Examples are easy
to find either for AT = () or for AT # ().
Example 28.1. Let g = ufw; + cud ™" + ugAH)qwg where m = Aq+ 1
and [ = Aq while we let either ¢ =0 or ¢ = 1.

Definition 28.2. With AT as above we define
g(O)T = Z(ab)eAT dabq uawb
and g(1) = g — g(0) — g(0)f

Lemma 28.6. We have that g(1) is the sum of those terms dg? u®w®
having ord¢(dq)q + |a| > (A+1)g. We also have

(1) orde(9(0)) = Ag = 1 < m = min{ord(g(0), orde (9(0)'}

(2) m < ord(g(0)") < orde(g(0)")

(3) m < (A+1)g=1+q<orde(g(1)) < orde(g(1)).
Definition 28.3. Let us define the partial sum g(1)* of g(1) to be the

sum of those terms dg,? u®w® belonging to p®(Re¢)[v] as well as having
orde(dap)q + |a| > (A + 1)g. Let us then define g(1) = g(1)* + g(1)~



SINGULARITIES 59

after the notation of Def.(28.2) and Lem.(28.6). Moreover we introduce
the fllowing decomposition:

(28.8)  G(+) = g(0) +g(1)* and G(=) = g(0)' +g(1)"
so that g = G(—)+ G(+)

Theorem 28.7. We summerise the preceeding definitions.

(28.9) G(+) = g(0)+g(1)* € p*(Re)[v]
G(=) = gO)+g(1)" € Y up(Re]
0£ace®(q)
and
0,8 = G(+)+G(—) for G = (gl /)
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29. DIFFERENTIATION ALONG GENERIC-DOWN STRATA

We have defined the summand ¢(0) of 9*(g) by Def.(28.1) and de-
scribed its properties by Eq.(28.6) of Th.(28.5). We have then defined
G(+) and G(—) by Eq.(28.8) and Lem.(28.6). We have thus obtained
the following “structural decomposition”:

(29.1) 0(g) = G(+) + G(=) for G=1(gl,/)

in the sense of Def.(28.3) followed by Th.(28.7).

In search of some invariants hidden in each of the summands of
Eq.(29.1), we are going to examine their characters by means of retrac-
tions r of Eq.(28.3) with the operator algebras P(q,r) and P*(g,r) of
Def.(26.4) with respect to “g-base algebras” B(q,r) of Eq.(26.2).

In the “etale” retraction case, the operator algebras and the g-base
algebras depend upon the choice of the parameters © = (u,w) of R
subject to Rem.(28.2). Refer to Eq.(26.6) in connection with Th.(5.3)
and Eq.(??) of Def.(5.2).

We will make use of P,(¢,r) and P;(q,r) with “pulldown bound” o
in the sense of Eq.(27.1) of Def.(27.1). They will be used in combination
with the *-full idempotent q-differentiation 0* in the sense of Eq.(??) of
Def.(?77?) with respect to z = (u, w). This operator 9* depends upon the
choice of z and will be written as 9,. Th.(4.1) describes the dependence
on .

Remark 29.1. Sometimes some symbols require clearer indication of
their dependence on the choice of the parameters © = (u, w), while some
other times we prefer to use even simpler symbols when the dependence
is apparent or irrelevant for the context.

(1) For instance the g-base algebra for a retraction r may be witten
B(q,w) instead of B(gq,r) when the projection map is defined
by w. Note that different w can give the same B(q,w) C Re. If
we have the same B(q, w) and we are not interested in any par-
ticular w we may write B(q,t) for B(q,w) with the dimension
t of the target space A’ of r.

(2) The primitive operators 51(;1),@ € €°(q), form a free base of
P(q,r)e as B(q,t)-module. The base depends not only upon the
choice of the retraction r but also an ideal base u of 1(5)g, al-
though the operator algebras P(q, r)¢ and its subalgebra P*(q, r)e¢
are uniquely defined by B(gq,r). However the primitive idem-
potent operators (51(f) delicately depends upon the choice of u
as well as B(q,w). To show the dependence we will write 51(;)1”
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instead of 6\, For instance Eq.(27.15) will be written as

(29.2) 00 =id =k, =id— Y u'6

u/w ufw w/w
0-£age(q)

where the 97, is the *-full ID in the sense of of Eq.(?7)) inside
Dif fre/B(qw) With respect to w.

Recall that the *-full ID o /. Das the property:
(29.3) 0 w(h) =03, (h) € B(q,w) for all h € Re

for any other choice of a base u’ of I(.5)e.
Incidentally 9, ' is different from 0 with x = (u,v). The latter is

u/w

the *full ID inside Dif fr,/x with respect to x. To be precise
(29.4) 0:i(h) — 05 (h) € p°(Re¢) for all h e Re

for any other regular system of parameters & of Re.
Our task is to search for some “invariants” out of G = (gl|/9) by

means of the application of (5&%

to g. We fix a smooth irreducible
(a)

u/w
with respect to the changes of the retractions r or of the parameters

(u, w).

S C Z and focus our attention to the effect upon the operators

By virtue of Lem.(26.1) it is enough to examine the effect by steps
of the following two kinds.

Remark 29.2. Step (1):

This is the case in which ¢-base algebra B(q,t) is kept the same by
the change of (u,w).

Then the operator algebras P and P* remain the same under such a
change of w. Therefore we don’t lose generality by using the same w.
What should then be examined is the effect on the operators 6 by the
change of the ideal base u of I(S)g, say from u to another base @. The
change from u to 4 is expressed by writing each w; as a B(q,t)-linear
combination of the {u’ b € €(¢q)}. Recall that R as B(g,t)-module is
freely generated by {u% a € €(q), } as well as by {u’ b € €¢¥(q)}.

(29.5) Write u® = 3 ey c(ab)u®
= c(a0) + D ospees(o) c(ab)ub
where

c(ab) € B(q,w) N I(D) =P and hence
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ol = 18,
q

Recall that for every integer v > 0 we have B(q, t)NI(D)” = p*(I(D))%al,

Thus we have

(29.7) either |b| > |a| or c(a,b) € p*(1(D))B(q,1).

Note that 4* € I(D) if and only if |a| > 0. If a = 0 then ¢(00) = 1

and ¢(0b) = 0, Vb.

Remark 29.3. Step (2):

This is the case in which w is replaced by w = w — f where f =
(fi,---, fi) with f; € (u)Re,Vi. We are keeping the same u but the
g-base algebra must be changed from B(q,w) to B(q,w).

Note that B(q,w) = p°(Re)[w] as p°(Re)-module is generated by

(29.6) ordipy(c(ab)) > q]

monomials 1°, b € €!(g). Now ? is written in terms of w as
(29.8) W’ = (w4 f)’ = w’ + P
where

w= X (J)urr e (rec )

0#£dee’(q)
b—deZl

For each a € €¥(q) and 0 # d € €'(¢) we can write
(29.9) u'f = D e Wlnay With Vear € Re
and then we must have
k| + ordrp)(Yaar)q = lal + ordrp)(f*) = lal + |d]
where we have only d with |d| > 1

For the inequlities above we use the fact that u* are B(q,w)-linearly
independent. We let

(29.10) Vopr = Z (Z)wbdwgdk

0#£dee! (q)
b—deZl

and then we have
(29.11) wi? = wtw® 4 Y W Cank
where Vo € B(q,w) and
ordr(VYepr ) > la| —|k|+1 forall (a,b,k)
because |d| > 1 in FEq.(29.10)
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By taking p°(Re¢)-linear combination we can extend the first equality
of Eq.(29.11) to its full generality because we have

Blg.w)= 3 it (Re) and Blgw)= Y ws'(Re)
bees(q) bees(q)

Thus we pick any system h = (h),b € €'(q), with h, € Re. Then let
h(w) = ZbEEt(q) wb(hb)q and h(U)) = Zbéet(q) wb<hb)q' Let \Ilak<h‘) =
Y et @ Uk (hy)?. The generalized formula is then as follows.
(29.12) uh(w) = u'h(w) + Y peoy uFW 1 (h)

where h(w) € B(q,w) and V. (h) € B(gq,w)

ordrpy(Var(h)) > l|a| = |k|+1 for all (a,k)
where we are only interested in the case of |a| > 0.
Theorem 29.1. Assume that S is smooth irreducible with dimS =t
and pick a closed point & € S. Let us choose a reqular system of pa-

rameters © = (u,w) of Re such that u is an ideal base of I = I(D, Z)e.
We also pick any other reqular system of parameters & = (i, w) with

I = (4)Re. Let
N _ 0 0
v(u/w) = Qiis = Ouju
Then for every G € I"™ we have
W/ e mtl
(29.13) v(uj—w)(e) c p(D) TR,

00V (E2) (@) < p() T B w)

u/w

and
Moo V(22)(G) € o ()51 < pr()

g
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Remark 29.4. Let D be a smooth irreducible subscheme of Z and let
& € D be a closed point. Let us pick and fix an etale retraction
(29.14) r:£€DCZN\ A" with t=dimD.

Choose and fix w which defines the projection morphism r and denote
the g-base algebra of r by

(29.15) B(q) = Blq,r) = (p°(Re))[w]
Let us then pick and fix an ideal base u of I = I(D, Z). Denote the
primitive operator algebra of r with pulldown bound 0 as follows.
(29.16) Polq) = Polg,r) = Polg,u/w)
We see that this operator algebra contain the following primitive idem-
potent operator.

0 . a a
(29.17) 5(0) =0\, =id— Y w6,

0#a€es(q)

which is determined by the choice of parameters (u,w).
Theorem 29.2. With the notation of R:prep-refer-notas Rem.(29.4)
the following residue class is uniquely determined by & € D.
(2918) (5(0) mod pe([(D, Z)g)Po((])

Namely it is independent of the choice of (w,u). The precise meaning
1s as follows: Pick any o defining an etale retraction with the same
¢ € D (instead of w) and any ideal base v of I (instead of u) then we
have

(29.19) 55) — 8(0) € (p°(1))Po(q).
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(2920> Du/w<g) = g<0> + Du/w(g(O)T+g(1)>
where Dy (9(0)' + g(1)) € p(I1(S))* ' B(g,t)
(29.21) g(0) = > dguw™
age*(q),lal=A

which is the ¢(0) derived from 9 (g) following the procedure of Def.(28.1).
Moverover we have
0:(9(0)) = g(0)

It follows that then ideal exponent
((Dusule) + 0 () Blg.x) )0z, q)

is independent of the choice of x = (u,w) and uniquely determined by
G and S C Z, provided S is smooth generic-down of dimension ¢.
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30. /9-SINGULAR DERIVATIVES

We examine the transform of G by a permissible blowup with centers
D > ¢ in the sense of Def.(18.2) and Def.(18.4). Special care about
permissibility is needed when D is contained in a generic down stratum
S of Sing(G). We thus introduce the technique which will be called /9-
derivatives along S which is analogous to infinitesimal deformation of S
inside Z. The /9-derivatives will play an important role as techniques of
choosing a better center for blowup in order to produce more desirable
results in the transformed singularities.

To define /9-derivatives we make use of the square nilpotent differ-
ential operators defined by Def.(5.1) with Eq.(??). We also refer to
Th.(5.2) and Th.(5.3).

Let us now consider a /9-exponent G = (g|| /%) in Z and a local
“separable” retraction r : £ € D C Z N\ A’ in the sense of Def.(26.1).
We propose to introduce the notion of /?-derivatives of G with respect
to a local separable retaction as above. (See Def.(30.1) and Def.(30.2)
below.)

Although we need definitions with respect to general separable re-
tractions, it is important to clarify the structure of /?-derivatives when
the retractions are “etale” and hence D is smooth of dimension n at .
In this case we have an open neiborhood U of ¢ € Z satisfying the con-
ditions described in Rem.(26.2). There we can make use of Def.(5.2),
Eq.(?7?), Eq.(??) and Def.(??). Namely the “etale” retraction proper-
ties of Def.(26.1) are maintained at every point € DNU with a chosen
and fixed projection morphism r : Z — A'. Also refer to Rem.(26.2)
followed by Def.(77).

Remark 30.1. We now summerize the basic assumptions and known
results in the case of “etale” retactions as follows.

(1) The morphism r : Z — A is smooth at every point of U, and

(2) r induces an etale morphism U N D — A’

(3) For any closed point n € UND, (u, w—w(n)) is a regular system
of parameters of R, where u generates the ideal I(D, Z), and
w defines the etale morphism U N D — A’

(4) P*(q,r) is a sheaf of algebras on Z|U which,locally at every n as
above, is freely generated by those square-nilpotent differential
operators 6,0 # a € €"(q), as p°(R,)[w].

(5) P*(q,r) is a coherent sheaf of modules on the scheme Z(g,r),
which is Spec(p®(Oz)[w]) where

(30.1) p(Oz)[w] = P*(q.r)(0z) = P*(¢,x)”'0
The last symbol means { f € Oz |P*(q,r)f = 0}
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(6) We have
(30.2) PHa,x) = Homye(0,))(Oz; p(Oz)|w])

(7) The morphism r is factored into the following two morphisms
(30.3) ZlU —— Z(g,r) —— A!

where g is defined by the Frobenius u — p°(u).

We have thus obtained the locally free coherent modules (and alge-
bras) of square nilpotent differential operators P*(g,r) on the scheme
Z(q,r) with respect to any “separable” retraction £ € D C Z \ Al of
Def.(26.1). As a matter of fact, the module is independent of D in the
retraction r of Def.(26.1). They depend only on a portion of r that is
the projection morphism Z O U — A!. For this fact we should recall
Rem.(?77).

Definition 30.1. Let I(S) denotes the ideal of the closed subscheme
D C Z in the local separable retraction r of Def.(26.1). We then define
the Ozr)-submodules of P*(¢,r), denoted by P*(¢,r)(—0), for each
integer o > 0 as follows,

(30.4) Pi(g.r) =
M Ker(P*(a.x) = Homye(o,) (1(D)", 02/ 1(D)" ™))

v—o2>0
Definition 30.2. Let G be a /%exponent in Z and let D C Z be
denoted by the ideal I(D). Write G = (g|| /9) with g = 2 = 271
with a cofactor v and a residual factor g at a closed point £ of D. Let
s be an integer with 0 > —s > —q. We then define the following ideal
erxponent in an open neiborhood of £ € Z:

(30.5) D(r,D)=9(G) = (J,0)

with J = P*(q,r)(—s)(v°g) and o = orde(J)
Here the ideal P*(q,r)(—s)(vPg) is independent of the choice of the abc-
expression of G. The ideal exponent D(r, D)) (G) in Z with various s

are called /%-singular derivatives, or /?-derivatives for short, of G with
respect to the retraction r. The numbers —s are called their degrees.

We next examine the dependence of those /?-derivatives on the
choices of the retractions r.

Remark 30.2. As far as D(r, D)=*)(G) is concerned, the question of its
dependence on the retractions is only about r as projection morphism
Z D U — A'. Any general change of r can be decomposed into the
following two kinds of changes.
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(1) (The first change) Choose any regular system of parameters w?
of Opep where A' = Spec(K[w]). This w' is identified with a
systemof elements in R by the given projection r defined by
w. Then (u,w') is a regular system of parameters of Re. In
this case the projection morphism rf defined by w' is factored
into the one by w and a local etale morhphism of A into itself.
Therefore the diferential operators 9 and hence primitive ones
delta' remain unchanged in Dif f;. We thus conclude

(30.6) P*(a:1)(=s)e = P*(a,1)(=s)e
and D(r,D)9(G) = D(xf, D)=9)(G)

(2) (The second change) Choose a new regular system of parame-
ters (u,wt) in such a way that w* = w mod (2)Re. With the
retraction r¥ defined by w* we then have the same u generating
I(D) while each monomial u®w® is changed as follows.

(30.7) u®(wh)? = uw® mod Z 2w p®(Re).

With the new retraction r* defined by w?, the change from
D(r, D)(=*)(G) to D(r*, D)=¥)(G) is done accordingly and the
details are shown in the case of generic down center D for G.

The /%-derivatives of degrees —s are useful in the study of singular-
ities along generic-down subschemes for G, in particular if the integer
s is chosen to be the one fitted to the chosen subscheme.

Remark 30.3. (1) Consider a G-stratification of Z of Def.(25.1) or
more specifically the canonical one of Rem.(25.1). Then pick
any generic-down one, say D, among its closed strata.

(2) Let & be a closed point of any generic-down irreducible sub-
scheme D containing £ in the sense of Def.(?7). We may choose
this D to be smooth at £ so that Th.(27.2) is applicable along
with Def.(30.1).

(3) For a closed point £ € Sing(G) we choose the following closed
subscheme of Z.

(30.8) The closure S(G,€) in Z
of the set {n € Z|resord,(G) = resords(G) }
Given a generic-down subscheme D C Z, which is contained in

Sing(G), the integer s for the /%-derivative D(r, D)(=*(G) in the sense
of Def.(30.2) will be chosen to be the one called significant for the
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relation between D and G at the given point £. The significant num-
ber s will be selected by means of the local analysis of generic-down
phenomena in view of Eq.(??) of Th.(??).

We go back to the /%-exponent G = (g || /?) with ¢ = p® in virtue of
Th.(??) and we follow the presentation described by Eq.(??), although
some of the symbols are changed so as to fit this section better.

We have a smooth irreducible subscheme D C Sing(G) C Z which is
generic-down for G. We assume that ord, (@) is constant m = Ag + ¢*
for all points of D N Z, where Aq = ordp(G) which means the order
at the generic point of D, where A is a positive integer and ¢* = p®
with an integer e* such that e > e* > 0. We have £ € DN Z, and pick
a regular system of parameters (u,w) of Re such that x = (1, ,z,,)
generates I(D, Z)¢ and w = (wy,--- ,w;). The generic down theorem
Th.(?7?) asserts the following presentation:

(30.9) g = > w’¢ + > w’ P! + A

l<isr beet(q)N(q*) 2 |a|>q*

which has the following properties:

(1) 1 < 7 <t and orde(¢;) = ordp(¢;) = Aforall i < 7. (zis
suitably reordered.)
(2) ordp(ta) = A

Also important are b = 0mod ¢* and |b| > ¢* except for those which
can be shifted into A. (Refer to Eq.(?7) and Rem.(?7?).)

Definition 30.3. After Th.(??) and Eq.(30.5), the above expression
Eq.(30.9) tells us that the numbers d with 0 > d > —q¢* are significant
for the study of singularity of G along a generic-down subscheme D.
With these d the /%-derivatives D5 (—7r)(G) will be said significant for
G along D. The number d is called the degree of the /-derivative of G
along D. Above all d = —¢* is the most significant, and D (—¢*)(G)
will be called the most significant /?-derivative, of G along D. This will
often be called the derivative of G along D and denoted by Derp(G)
for short.

In regards to Th.(??) we can add a little more refinements as follows.

Lemma 30.1. An expression Eq.(30.9) of h can be chosen in such
a way that the following condition s satisfied in addition to all the
properties of Eq.(?7).

(30.10) SN =0, V(0b) € €"(q)

T
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Lemma 30.2. Under the assumptions of Lem.(30.1), assume that the

expression Eq.(30.9) is satsfied. Then the coherent ideal PZ(Q)*(D)h is
locally at & of the following form.:

(30.11) pe( { & Vi, 1y V(0b) € €"(q) }Ozg¢ )



SINGULARITIES 71

31. FITTED PERMISSIBLE BLOWUPS

Recall Def.(18.2) on permissibility of a blow-up = : 2/ — Z with
center D for a /9-exponent G = (g|| /9) and its transform Def.(18.4).
Also refer to Def.(18.1), Th.(18.1) and Th.(18.2).

In some cases, however, Def.(18.2) is not strong enough for the pur-
pose of reduction of singularities. To introduce stronger notion of per-
missibility, we need to recall the results on I'-mazimal divisor, obtained
by Th.(19.1) and Rem.(19.1). We also need the notion of checked
/9-exponent G associated with the given G in the sense of Eq.(19.2)
of Def.(19.4). This is locally obtained from G by dividing out its I'-
maximal divisors.

Definition 31.1. A blowup « : Z/ — Z with center D, permissible
for G, is called closed-fitted or cl-fitted for short if we have ord, (G) is
constant for n € DN Z,. Recall Eq.(19.1) of Def.(19.3) in relation with

Def.(19.4). Note that we always have

(31.1) ord,(G) = resord,(G) for ¥n e Sing(G) N Zy
Thanks to Th.(17.1), we have a locally finite G-stratification of

Sing(G)a = Sing(G) N Ze

in such a way that each member D of its strata is smooth and lo-
cally closed inside Z, with Zariski topology and ordn(g) is constant
for closed points 7 of D. It then follows that the blowup with center D
is cl-fitted permissible for G in the sense of Def.(31.1) if it is permissible
in the sense of Def.(18.2). However D could be of generic-down type
in which case it is not fitted in the sense defined below. The fitted

permissibility will be indeed a notion stronger than that of Def.(31.1).

Definition 31.2. A permissible blowup 7 for G (and for I' as always)
with smooth center D is said to be scheme-fitted or sch-fitted for short

if ord,(G) is constant for all n € D, or equivalently ord:(G) = orde(9)
the generic point ¢ of D and for all points & of DN Z,.

Note here that since D is smooth we have ord:(G) < ord,(G) for
every point ¢ € D by Lem.(17.3). Moreover for a closed point ¢ in

the closure of ¢ we have ord,(G) < orde(G) by Lem.(17.6). Thus if

ord;(G) = orde(G) then ord:(G) = ord,(9).
Theorem 31.1. If m with center D 1is cl-fitted permissible but not sch-
fitted for G then D must be generic-down type for G.

This theorem is nothing more than a definition by itself. What is
important is its supporting background that is a criterion for “generic-
down” phenomena not to happen. The reader should refer to Th.(??)
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with Eq.(??). In such cases we need a different strategy for choosing
centers of blowups toward the end of reduction of singularities. To
deal with generic-down type centers, we introduce the following notion
of permissibility which is weaker than being sch-fitted but generally
stronger than cl-fitted.

Definition 31.3. A permissible blowup 7 with center D for G is said
to be fitted permissible for G if there holds either one of the following
two conditions:

(1) D is not generic-down type for G and 7 is sch-fitted permissible
for G.

(2) D is generic-down type for G and the ideal exponent Derp(G)
has a constant order along D where Derp(G) denotes the (most
significant) /?-derivative of G along D in the sense of Def.(30.3).
Incidentally it follows that 7 is cl-fitted for G.

See Eq.((30.11) of Lem.(30.2) with reference to Def.(30.3).

Remark 31.1. The center of a fitted permissible blowup for a /?-exponent
is necessarily transversal by definition to the foliational component
(which exists only in the generic-down case) at every point of the cen-
ter. The notion of foliational component are mentioned in the other
sections such as the next one on /?-stable singularities.
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32. /9-STABLE SINGULARITIES

One of the most important technical elements in our approach to
the problem of resolution of singularities by means of a finite sequence
of permissible blowups is to search for a good definition of stable state
of defining equations for the given singular data and to design a pro-
gram to achieve such a stable state if possible. In the case of char-
acteristic zero, the stable state was “normal crossings” whose stability
with respect to any subsequent permissible blowups was not only use-
ful for formulating the final state of resolution of singularities but also
technically indispensable in many steps of the inductive proof of the
embedded resolution in all dimensions.

In characteristics p > 0, “normal crossings” is also useful to some ex-
tent but it is almost always unstable and much less powerful especially
in the course of our inductive proofs. We have thus chosen to introduce
a new notion called /?-stable state and /?-stable decompositions.

A /9-stable state in positive characteristics is not “stable” unlike the
normal crossings in the zero characteristic cases. However it turns out
to play an important role as a workable substitute for normal crossing
in order to treat /9-exponents in positive characteristics. At any rate
the /9-stable state is ubiquitous in our theory.

The adjective stable or stable should be spoken in its global sense
when we are aiming for a global embedded resolution of singularities.
However it seems unavoidable that our investigation of /?-stable ex-
ponents is local just as the edge decompositions of Th.(10.2). In this
section our study will be local. The globalization will then be formu-
lated in terms of the infinitely near singularities and the characteristic
algebra & of Def.(6.2).

Definition 32.1. A /%-exponent P combined with an integer 0 < p <
e, where ¢ = p® e > 1, is called /?-stable exponent of depth p, or /i-
stable for short, at a closed point £ € Sing(P) N Z if we can choose
f € Re¢ in such a way that within a sufficiently small neighborhood of
¢ € Z we have

(32.1) P = (f| /1) with f = uz”a’
where
(1) 0<p<e—1anduisaunit in R
(2) z = (21, , 2) is a system of parameters defining those com-

ponents of I which contains £ and « € Z}
(3) 6 is either zero or one,
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(4) if 6 =0 then « Z 0 mod p

(5) if 6 = 1 then & is a parameter such that (z,2) extends to a
regular system of parameters of Re. Namely 2 is I'-transversal
in the sense of Def.(14.1).

We call p the stable depth of P and @ a foliational parameter of P.

Remark 32.1. The z; are “geometrically rigid” in the sense that they
are unique up to unit multiples. On the contrary & is not so “rigid”.
Indeed, assuming 6 = 1 and speaking locally at &, we may replace &
by any element of the form

(32.2) ol = ue + 2 where

(1) w is the given unit element of R
(2) ¢ is any element of p° #(R)
(3) o’ is the p°*-supplement of « in the sense of Def.(22.1), i.e.,
o’ is the smallest among those § € Z} such that « + 8 = 0
mod (p°~+).
(4) &f(€) = 0, i.e, ez (€) = 0. Clearly this is automatically satisfied
if « Z0 mod p**.
Note that the replacement of @ by the above @' does not change the
/%-exponent P and that the hypersurface ! = 0 is smooth and I'-
transversal at the point &.

Remark 32.2. In a sense the family of hypersurfaces f = 0 are a
kind of foliational (or movable in a pencil) within Z — |I'|. The idea
of introducing such foliational hypersurfaces became clearer thanks to
our discussions with H-M. Aroca and F. Cano at Valladolid University
in March 2005 and at the Tordesillas Conference in August 2006.

Ezample 32.1. Let h = 21’)222’9323?4 € K|z] with three variables z =
(21,22,23). Let ¢ = p> with the characteristic p > 0 of K. Then
P = (h||/? is /%stable of depth 2 at every closed point of Sing(P)
which is {zp = 0} U {23 = 0}. A /9-stable exponent is 7’ with
(1) f = 22P2 at (0,0,0), at (0,1,0) and at (0,0, 1)
(2) f= 22’72{2881 with &1 = (2; — 1) at (1,0,0), and
(3) f= 252362 with sy = a1 + (821 + 1)(22 — 1)P at (1,1,0)

(4) f = zPoes with aeg = ey + (sey +1)(23 — 1)? at (1,0,1)
where a&;,1 <7 < 3, is a foliational parameter respectively.
Example 32.2. Let us consider the case of p > 2 and r + 1 variables

2 = (20,21, , %) with 2r = p+1. Let h = z][]_, 27*. Then
P = (h|/9) with ¢ = p? is /%stable of depth 0 at the origin but it is
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not /%-stable at any other closed point 7 of Sing(P), where Sing(P)
is {z1 = -+ = 2z, = 0}. However at 7, say = (1,0), we can write

h = h* + R’ where hf = <H::1 zfp)ae with &2 = 2 — 1 and B> =
[1._, 2. Note that
(1) P* = (g"|| /9) is /9-stable of depth 0 at 7.
(2) With h, defined by hf = h*, P’ = (gF || /9) is /9-stable of depth
1 at n.

Definition 32.2. The notion of depth is extended to an arbitrary /%
exponent G = (g || /9) by saying that the depth of G at a closed point
¢ € Sing(G) is the maximal integer < e such that h € pH(R¢). It
should be noted that this number yu is well defined in view of Eq.(16.1)
of Def.(16.1).

Definition 32.3. Let P and B be two /%-exponents with depths a and
b respectively. Assume b > a. A /%-exponent G is called a /%-extension,
or an extension for short, of P by B if we can find representations
P = (/™| /7) and B = (¢"" || /%) such that G = (f*" + ¢*" || /7). Note
that G then has depth a.

For an example of /?-extension, observe Ex.(32.2) in which P is an
extension of P# of depth 0 by P° of depth 1.

Definition 32.4. Consider a blowup 7 : Z' — Z with center D. Let
G be a /%-stable exponent at a point £ € D in the sense of Def.(32.1).
We say that 7 (and D) is /9-stable permissible for G at ¢ if it is fitted
permissible for a /9-stable exponent ssuch as G. Let us recall the general
agreemen that D must have normal crossings with I'" as always.

Theorem 32.1. Let G be the transform of a /1-stable exponent G at
a closed £ by a /9-stable permissible blowup © : Z' — Z. Then G’
is /1-stable at every point of 7=(£). The depth of the transform may
become deeper after the transformation. Let £ be any closed point of
7€) and we have the following cases:

(1) If the center D does not contain the foliational component {&° =
0} and if £ is in the strict transform of the foliational compo-
nent {&’ = 0} when 6 # 0 then G' is /9-stable with the same
depth.

(2) If £ is not in the strict transform of the foliational component
{&® = 0} (automatic if 6 = 0) then G' is /-stable while its
depth may be bigger.
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Definition 32.5. Consider a blowup 7 : Z/ — Z with center D. The
notion of I'-pure in Def.(??) is applicable in the case of /%-exponents.
Namely 7 (and D) is called I'-pure if D is an intersection of some
members of ' locally everywhere. If moreover 7 is permissible for a
given /%-exponent G then it is said to be I'-pure permissible for G.
Needless to say any ['-pure blowup is permissible for I'.

Theorem 32.2. Assume that P = (g|| /) is /9-stable of depth p at a
closed point & € Sing(P) in the sense of Fq.(32.1). Letw : 7' — Z
with center D 3 £ be I-pure permissible for P = (g|| /?) and let P’ be
the transform of P by w. Pick any closed point & in Sing(P" ) N7 1(£).
Then P’ at £ is either [1-stable of the same depth u by itself or an
extension of a /9-stable of depth p by another /9-stable of depth > p.

The theorem will be proven after several observations and remarks
below. We refer to Def.(32.5) and our blowup 7 : Z' — Z with
center D is assumed to be I'-pure permissible so that D is automatically
transversal to every choice of the hypersurfaces &' = 0 of Eq.(32.2)
when 6 =1 of Eq.(32.1).

We will prove Th.(32.2) after the Rem.(32.3), Rem.(32.4) and Rem.(32.5)
below. We will be using the notation and the assumptions of Th.(32.2)
and Def.(32.1).

Remark 32.3. Let us choose an exceptional parameter 3 at a closed point

¢ € Sing(P) N7 (&), in terms of which we describe the transform

P’ of P by 7 locally at &. Since D is I'-pure, we may assume z =

(2(0),2(1)) (by reordering z if necessary) in such a way that the ideal

I(D, Z)¢ is generated by z(0) and 3 is one of the members of z(0). Let
us write 2@ = 2(0)*0z(1)*M),

(1) If 6 = 1 we may assume that v = 1 in Eq.(32.1) by replacing

e by ute. We let transforms &' = @ and define 2’ to be

the combined system of (3,2(1)) put together with all those

members of 37'2(0) which vanish at &’. We let u’ be the product

of those (3712;)* which do not vanish at . With those &/, 2’

and v/, we obtain a /%-stable form of P’ = (f”"|| /) at & by

choosing
(32.3) o=

where 6 = 1 and o/ is determined by the equality
(32.4) WA = el (3_1z0)a02(1)a(1)

Here Eq.(32.3) proves that P’ is a /9-stable exponent at &'
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Assume 6 = 0 so that « 0 mod p. We write a = pb++ where
b is the integral part of p~'ar so that 0 < ; < p — 1,Vi. We
write 2P = (20°@2(1)PM) and 27 = 2(0)7©@2(1)*™. Remember
that we have 7, # 0 for at least one k. Let us first consider the
case in which (1) # 0. In this case, we define 2’ and o’ in the
same way as was done by Eq.(32.3) and Eq.(32.13). Then we
see that /% has a factor z(1)P*M+ MW Since (1) # 0 we again
conclude that Eq.(32.3) is a /%-stable form for P’.

Assume 6 = 0 and (1) = 0. Then we must have 70 # 0.
In this case we have two possibility: the first one in which
5191270 vanishes at ¢ and the second in which it does not. Let
us consider the first case. Remember that we have at least one
index k such that 705 # 0. Then following the same procedure
as was done in Eq.(32.3) and Eq.(32.13), we see that 2’® has
a factor 20}P** ™% Again since 0 < v, < p, we conclude that
Eq.(32.3) is a /9-stable form for P’.

Remaining is the case in which 6 = 0, y(1) = 0 and 3270
is a unit at &. We may then choose 3 to be 20, with any k
such that v, # 0. We divide the system 3 !20 into two parts as
follows:

57120 = (U, 20°)
with the subsystem 2z0F

1

composed of exactly those 3 'z, € max(Rye)

so that U is the subsystem of 37'20 composed of those 37!z
which are units in Re. We define
u = uwU® where U’ = H (371z)™
i3z, €U

which is a unit in Re. We define our 2" of this case to be

7 = (3, 20F, z(l))
Here we have two subcases:

(a) 7] = 0] # 0 mod p
(b) |v| = |70] = ap with a positive integer a.

In the subcase (a) we let ¢' = 0 and we define the exponent o’ by
setting the following equality:

(32.8)

/

o Z/Oé — ua\ao\—pe*“ <5—|a0| ZOaO) Z(l)a(l)



78 H. HIRONAKA

where 2’ is the one already defined by Eq.(32.7) and «’ by Eq.(32.6).

Hence the exponent of 3 in the monomial 2’ " is equal to |a0] — p=#
which is congruent to 7 = v0 modulo p. Hence it is not congruent to
0 modulo p. Thus we conclude that the p*-th power of the monomial
of Eq.(32.8) is a /%-stable form of the transform P’.

We are now left only with the subcase (b) which is the final case and
will be investigated in the next remark.

Remark 32.4. We finally have the case in which 6 = 0, 27 = 20"° with
(1) = 0 while |a0] = |y0] =0 mod p. We also have

ordg(20"°) = ordp(20"°) = ap
with a positive integer a. With «’ of Eq.(32.6) and Eq.(32.8) we define
(32.9) & = u — wvalg(u') where
valg () means evaluating at the point &'

Very important is to prove the fact that ordg (s’) = 1 and hence &' = 0
defines a smooth hypersurface in a neighborhood of ¢ € Z’. Let us
prove this. Following the notation of Eq.(32.6) we have

0;
valg (u') = valg (u) H (valgl(;,_lzi)>
i3 1z €U

For the sake of simplicity, we let ¢y = valg(u) and ¢; = valg (37 '2;).
Let Cy = v and C; = 371z;. Then we have

(32.10) & =Co[[,CY — e[, &
= (Co = c0)(ILiso C) + oI im0 O = [Tiso &)
= (Co = c0)(ITi50 C) + co(C* = ) ([Tis1 C)
+eocy! (Hi>1 G =Tl C?)
= Yiee (i ) (C = ) T O
+([Ti<k cf") (Hj>k Cjéj — Hj>k cj’) for every fized k
=2k <(Hz<k Cfi)(olfk - Cik) Lok Cfi) sum for all k

where we are letting 0 = 1. Let us here remark:

(1) ¢ is a subsystem of « and it contains all those oy = pby + Vi
having 0 < v, < p. Therefore for each k, C,f k— ci’“ decomposes
into a sum of two summands similar to the above, one of whose
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is a unit multiple of C})* — ¢}* while the other is a unit multiple
of a p-th power.

(2) For every k > 1 the corresponding summand above contains a
factor of the form

O — % e K[3 2] where z € 20

and other factors of the summand are all unit.
(3) Moreover the leading term of Cy — ¢y belongs to K3, z(1)].
(4) For each k,0 < v < p,

ordg (CJF — ) =1
After all these observation we conclude that

ordg (&) = mkin{ordg(C’,:’“ —")} =1

With those &’ and 2/, we obtain a /¢-stable exponent

(32.11) Py= (4711 /%)

which is defined locally at & by

(32.12) foo= 2% w”

where ¢’ = 1 and o is determined by the equality

(32.13) w2 = PO (57150)PP0) (1))

It is clear that o is divisible by p. We define b’ and ¢0 € K by
(32.14) o =pb’ and valg(u') = c0?

We next define and investigate a kind of spin-off, denoted P,, out of
the transformation of P by the blowup 7.

Remark 32.5. Define an integer 1/ and a constant v € K by
(32.15) W=+ v oand v = 0" " where

V' = maz{v|0<v<e and 2 € p’(Re) }.
v o= 0" € K with c0 of Eq.(32.14).

We can then find f, € Rg such that

(32.16) S = Y

The transform P’ is then written as follows:

(1) If i/ = e then locally within a sufficiently small neighborhood
of ¢ € Z' we have

P=P = (1))
which is /?-stable.
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(2) If 0 < i/ < e then we have another /?-stable exponent P,
(32.17) o= (K 11/9)

1"

with f, = v2'*, o’ = % ( Refer to Eq.(32.15))
Pl= (BT

In the last case the transform P’ is a /9-extension of the /%-stable Py
of depth p by the /%-stable P, of depth p/ > p. We have thus completed
the proof of the theorem Th.(32.2).

We sometimes call P, a spin-off of the transformation of P by the
blowup 7. The following special case of Th.(32.2) will be found very
useful later.

Theorem 32.3. In the case of ¢ = p of the theorem Th.(32.2) there
exists no spin-off. Namely the transform of stable exponent by a I'-pure
permissible blowup is stable by itself.
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33. /9-METASTABLE SINGULARITY

Let 7 : Z' — Z with center D be a fitted permissible blowup for G =
(gl /?) in the sense of Def.(31.2) and in particular it is permissible for
G, which denotes the checked associate of G in the sense of Def.(19.4).
Let G’ be the transform of G by 7. Let £ € Sing(G) C Z be a closed
point and pick a closed point & € Sing(G') N7~ 1(€). We want to
examine the effect of such a blowup to the invariant resorde(G) in the
sense of Eq.(19.1) of Def.(19.3).

We normally expect resordg(G') < resorde(G). (The singularity
did not get worse !) But sometimes it happens that resordg(G') >
resorde(G).

Following is the most interesting case to be examined closely:

(33.1) resordg (G') > resords(G) while ord¢(G) = ordp(G),

where ordp(G) = ord:(G) by definition with the generic point ¢ of D.

Definition 33.1. When we have Eq.(33.1), we call & a metastable
singular point of G at & for 7 (in short, metastable point for ).

Remark 33.1. We follow the manner of Re.(20.1) in choosing parame-
ters z = (v,w) with v = (v, -+ ,v;) where z consists of those param-
eters defining the components of I' containing £&. We follow the man-
ner of abe-expression of Def.(20.1) but here we use an expression G =
(V £l /%) locally at the point & where V = 2% = 29927 is ['-maximal
divisor and 297 is its gI'-factor in the sense of (19.1). We choose f to be
a residual factor of G so that we have resorde(G) = orde(f) according
to Def.(19.3). We also write 27 = v° with 0 < §; < ¢, Vj.

We are given a blowup 7 with center D with respect to which we
selecting additional parameter w in such a way that = = (z,w) is a
regular system of paramers of R, with the z = (v, w) and moreover the
following conditions are satisfied.

(1) The ideal It of D at & is (vl,w',w")Re where v = (v, 0}),
w = (wh,w) and w = (wl, W),
(2) vjRg = I¢Re, i.e., v; is an exceptional parameter for = at £'.

In this section we take the following notational simplification in our
study of metastable singularity:
(1) j=1
(2) all the components of v; 'w’ take zero values at ¢'.
(3) every component of v; ! (vf, w') takes a value at ¢ which is either
zero or 1.

These can always achieved by a simple coordinate transformation.
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Proposition 33.1. (7. Moh and H. Hauser) Assume that & is a
metastable singular point of G' for . Then we have
(1) the center D is contained in every I'; for 1 < j <t.
(2) € is not in any of the strict transforms of I';,1 < j <'t, by .
(3) orde(G) is divisible by q, which is equivalent to saying that |y|+d
is divisible by q where d = resorde(G).

The first assertion implies that v = v’ and v¥ = (.

Remark 33.2. vl_lvj, 1 <j <t—1, takes nonzero values at ¢’. With no
loss of generality we may and will assume that

(33.2) the values (v;'v))(€)=1,1<j<t—1, andlet=1t—1.

Let us divide w' into two parts w! = (w'(1),w(2)) in such a way that
vy 'wf(2) vanish at ¢ while none of v; 'w'(1) does. We again assume

(33.3) the values (vfle-)(ﬁ’) =1, ij- cwi(1)

so that v 'wf(1) — id, will become a part of a regular system of
parameters of Re where id, = (1,1,---,1) with the size a of w'.

Theorem 33.2. Let d = resordg(G). If there exists a smooth sub-
scheme D > & which is generic-down type for G at € in the sense of
Def.(??) then we must have

c+d=1 modp

for the c of the expression of Eq.(20.1). It follows that if any such D
exists at all then metastable singularity cannot occur with any permis-
sible center.

Let us write @ = g8 + v € Z§ with 0 < v; < ¢,Vi. We have the
q-supplement of v in the sense of Def.(22.1), the same of a, which is
to be the unique element v* € Z{ such that o +~v* =0 mod (¢q) and
0§’y}‘<qforalli,1§j§t.

Remark 33.3. Let d = resord¢(G). We then begin with () (d)-cleaning
a given residual f of G with respect to { A0 |\ € R¢}. ( Refer to
Def.(13.2) and Def.(??). ) It follows, for instance, that orde(f) =
resorde(G).

Then ¢ is metastable if and only if we have o € p°(Rg) such that
(33.4) ordg (vt_d_hl(zﬂf) - 0q> > d.

Remark 33.4. Here we choose o in such a way that the left hand side
is maximal among all choices, so that the left number of Eq.(33.4) is
equal to resordg(G'). In this way we can later readily investigate the



SINGULARITIES 83

question of how big the residual order resorde(G’) can become at the
given metastable point £ € 771(&).

We write
(33.5) f = f(d) + f* with orde( f*) > d
where f(d) is a homogeneous polynomial of degree d in the variables

(v,w',w"). Since UI_MN is a unit in B¢ we then have the total metastable

inequality
(33.6)  orde <'defﬁ + (vr?f(d) — (’U;'VIU'Y)_IU(J)) > d
where
vt e (v, wh wh)Re
where the last inclusion is due to
ffe IIn MM = Ml = (v, wh)Ie + IZ.

It should be noted here that we have a regular system of parameters
of Re composed of the following two parts:
(33.7) (vy, vy 'wi(1) —id,, vy wt(2), wh, vitwt, W)

i addition to vflvj —1,1<5<t

where id, = (1,1,--- ,1) with the size a of w'(1).

Let # =t — 1 and we define what we call metastable parameters T
(33.8) T= v —1,---, 07 vy — 1) and idg=(1,---,1)

in such a way that idy + T is v; 'v of which v, v; (= 1) is deleted.
Let us also write

(33.9) U = (v, vy 'wh(1) —id,, vi'w(2), wh, o7'wl, W)
which will be written as (vy, Uy, -+, Uy)
We divide U into 3 partitions as
(33.10) U = (v, U(1),U(2)) where
v 18 the exceptional parameter for m at &
U(l) = (nt (1) —id,, vy'w!(2), v7lwh)
and U(2) = (wh wt)
We will later make use of the above partitions of our parameters. We
should keep in mind that
(33.11) (v, T, U(1), U2))
is a reqular system of parameters of Re
so that Ry = K[[ v, T, U(1), U(2) ]]
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where Rgz denotes the completion of Re and K is its coefficient field
which is a separable algebraic extension of K.

Remark 33.5. We let
(33.12) v =), so that || = |y =,

Namely V7 is the product H?:l V;j for a system V' of length 6 and
for exponent v* of length t = 6 4 1, where ~* is g-supplement to ~ in
the sense of Def.(22.1). For instance we have the metastable unit

-1 )
(33.13) (v;'”'qﬂ) = (idy + T)™" = (idy + T)"""(idy + T)"

where in the middle term the last component of the exponent —v is
conventionally neglected. (Think of adding one more component 1+ T3
to (idg + T') with 71 = 0.)

Pick any o of Rem.(33.4) and then let
(33.14) 7 = (idg +T)" "0 with a chosen o.
We rewrite Eq.(33.6) with this 7 as follows, and we have that ¢ is
metastable for 7 if and only if we have 7 such that

the basic metastable inequality
(33.15)  ordg (vf + (o (d) — (idy + T)7' 7)) > d
where
Ul_dfﬁ € ( U1, U(Q) )Rf’

where 7 must be chosen to make the left hand side of the inequality
Eq.(33.15) maximal among all choices. ( Respect to Rem.(33.4).)

It should also be noted that since f(d) is a homogeneous polynomial
of degree d only in the variables (v, w',w!), v;7%f(d) does not have any
nonzero monomial terms divisible by any of the variables (v, U(2)) so
that we have

v f(d) in K[T, U(1)].
Let us write 7 in two parts
(33.16) T = 7(1) + 7(2) with
(1) € K[U(1),T] and 7(2) € (v1,U(2))Re
Now, taking the inequality Eq.(33.15) modulo (vy, U(2)) R, we ob-
tain the following key inequality
7(1) € K[U(1),T] and

(33.17) ordg (z;;d F(d) — (idy + T)’YbT(l)q> >d
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Here it is important that the combined system of Eq.(33.7) is a regular
system of parameters of Re.

Theorem 33.3. Let F(T,U(1)) = vy %f(d), which is a polynomial in
K[T,U(1)]. If £ is a metastable point of the transform G' of G by ©
then there exists T = 7(1) + 7(2) € R with respect to Rem.(33.4) and
7(1) € K[T,U(1)] according to Eq.(33.16) in such a way that

fundamental metastable equality

(33.18) F(T,UQQ)) = |(idg+ T)"7(1)4 )

where [|q means the partial obtained by summing up all the monomial
terms of degrees < d in a polynomial (or power series) with respect to
the chosen wvariables. Moreover we automatically have or can choose
7(1) in order to have the following properties:

(1) F(T,U(1)) is a polynomial of degree < d,

(2) (1) # 0 because F(T,U(1)) # 0,

(3) the leading homogeneous part of F(T,U(1)) is a qg-th power by
the equality Eq.(33.18).

(4) The nonzero monomial terms of (idg+T)" are p°(Rer)-linearly
independent. In fact the components of v° are all < g — 1 and
T extends to a reqular system of parameters of Re .

(5) We may choose 7(1) € K[T,U(1)] without affecting Eq.(35.18)
and Rem.(33.4). (We may even choose deg(7(1)?) < d without
affecting Fq.(33.18) by itself.)

(6) We have ordiryay(F(T,U(1))) > d—|3’|. This is due to the
cleaning Rem.(33.3) of f by means of v

(7) We can choose T(1) such that orde (7(1)9) = ordir,uay(r(1)?) =
orde.u)(F(T,U(1))) > d = |7|.

(8) We have F(T,U(1)) € K[T,p(U(1))].

(9) T is I -transversal at & where I is the NC-transform of I by
in the sense of Def.(12.2). In fact the subsystem (vy, vy 'wf(2), wt)
of Eq.(33.7) is the system of parameters defining those members
of I'" passing through &' and the combined system

(T, vr, vy 'w'(2), wh)
extends to a reqular system of parameters of R by Eq.(33.7).

Corollary 33.4. The fundamental metastable equality Eq.(33.18) is
written more explicitly as follows. Let us write

T(1)? = Z 7

d—|v*| d
q <l§q
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where 7, is a homogeneous polynomial of degree | in K[T,U(1)]. Let us
use the symbol { }, to denote the homogeneous part of degree a. Then
we have

FT,UQL) = Y 3 {zd9+T }b

d—|v*| —b  b<d-lq
q <l§ q
Moreover it follows that

FT,UW) = Y [(@'d9+T)7b]d_lqAIq
d—\v*l<l§

Q

with certain homogeneous polynomial N, of degree | in K[T,U(1)], so

that
> A
lg+b=d
where Ay = vi\; and @, = v? [(zd(; + 1) } with 0 < b < |7°|. Note
b
that @y, is a homogeneous polynomial of degree b in K[v] and that Oy, &
K[v1].

Theorem 33.5. Let F(T,U(1)) = v;%f(d) as was in Th.(33.3). Let
7 be the sum of those terms of F(T,U(1)) which belong to p°(Re/). If

¢ € Sing(G') is metastable of G for m then we can choose T* instead of
7(1) in Eq.(33.18) as follow.

(33.19) F(T,U1)) = (id9+T)7bT’jq]d

Theorem 33.6. Under the metastable assumption, the number d of
Th.(33.8) cannot have |y*| > d > |7°|. With respect to

(33.20) d = ordg(vi17%f(d)) = ordg(r(1)9)

the inequality d > d — |°| of Th.(33.3) is useful (after the cleaning
of Rem.(33.3)) when d > |y*|, while this theorem is significant when
d<py|=R]+m.
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34. MOH’S THEORY FOR ¢ = p

In this section we are primarily interested in the case of ¢ = p and
examine the special feature of metastable phenomena in the special case
with e = 1 of ¢ = p°. However we first start with the assumption and
notation for the case of general ¢ = p°, e > 0, before we specialize our
interest to the case of ¢ = p. We are given a closed point £ € Sing(G).

G=1(gll /Y with g=2"v"h

where 29% is the g-factor, v” is the g-cofactor and h is a residual fac-
tor of G. Also z = (v,w) is the system of parameters defining those
components of I' passing through &, 0 < ~; < ¢ for every ¢ and
d = orde(g) = resord¢(G). Moreover h is cleaned by v7" according
to Rem.(33.3) with the supplement 7* of v in the sense of Def.(22.1).
We write h = h(d) + h* with orde(g*) > d according to Eq.(33.5).

We also have the transform G’ of a given /%-exponent by a permissible
blowup 7 : Z' — Z with center D.

Attention: In this section, we are not assuming d > 0 a priori.
However if d = 0 then we must have v # 0.

From now on we pick a closed point & in Sing(G') N 7~ (§) and
assume that £’ is a metastable point of G’ for the blowup .

We will follow the notation of the earlier sections in regards to our
selection of parameters according to Rem.(20.1). We have = = (z,w),
z= (v,w), w= (wh,w") and w = (W, w) so that (v,w’,w') generates
the ideal of D at . Our exceptional parameter at £ is chosen to be v,
according to Eq.(33.2) of Rem.(33.2). We let v = (vq,--- ,v;) and let
cj—1 € K denote the value of vy lvj at £’ for every j > 1. We define vari-
ables T = v;'vj—cjand T = (T}, -+ ,Ty) with § =t —1 in the man-
ner of Eq.(33.8). Write ¢ = (¢, -+, ¢p). We choose o by Eq.(33.4), and
7 by Eq.(33.14). We write 7 = 7(1) 4+ 7(2) by Eq.(33.16). We choose
variables U = (v, U(1),U(2)) and ¥ of Eq.(33.9) and Eq.(33.10). Thus
(v, T,U(1),U(2)) of Eq.(33.11) is the regular system of parameters
Eq.(33.7) of Re.

We then have the basic metastable inequality Eq.(33.15)

(34.1) ordg (vl_dhli + (v7n(d) — (c+ T)”qu)> > d

with 7° is obtained from ~ by deleting its first component. Let 7(x)
denote the initial homogeneous part of 7(1) of Eq.(33.15) so that 7(x)9
is a homogeneous polynomial of degree d — |y°| 4+ k with an integer k
such that 0 < k < |3°| by Th.(33.3).
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For notational simplicity, let us write
(34.2)  Agpr = o7 — (c+T)'7(2)7 € (vy, U(2))Re
Baw = (/e T — [r(1)3(c+T)7 Jun)
and
(34.3) Con(1) = 7() e+ D"}
where { }, =[]s — [ Ja—1 after the notation of Cor.(33.4), that is

Cann(1) = 707 ( [+ T o = [+ TV | i)
which is in K[T,U(1)1].
Can(2) = [(F()7 = 7(x)7)(c +T)" Jass
€ P (Re)[(cH+ 1) oy
We then rewrite the above Eq.(34.1) as
(34.4) ordg (vfdh —(c+ T)7b7q> > d
where
o7 — (c+T)" 71
= (A1 — Bay1 — Cay1(2) ) + Caza (1)
in which
(1) ordeg(Bgs1) > d+1
(2) Cg441(1) have no nonzero common monomial terms with any one
of Agy1, Bar1 and Cyyq(2).
(3) C441(1) is homogeneous of degree d + 1 in K[T,U(1)] unless it
is zero,

(4) Cyy1(1) € K[T,U(1)7) and it is a partial sum of the power series
expansion of

(345) (Aars — Bt — Cana() + Can(1) € Klfor, T.UQL). U()]).

Definition 34.1. The polynomial Cyy1(1) € K[T,U(1)%] of Eq.(34.3)
will be called resord-core of the transform G’ of G by 7 at the metastable
point & with respect to ' = (vy,T,U(1),U(2)) which is a regular
system of parameter of Re. It is homogeneous polynomial of degree
d+ 1 and a partial sum in the power series expansion of Eq.(34.5).
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We have the following special case of the theorem of T.T.Moh, [29],
and we reprove it in the manner which we prefer for the purpose of the
subsequent /%-reduction theorems.

Theorem 34.1. (T.T. Moh) Let us consider the case of ¢ = p. Then
we have resordg (G') < resorde(G) + 1. The essence of this assertion
is that if & is a metastable point of the the transform G' of G by 7 then
the resord-core Cqy1(1) of Def.(34.1) is nonzero.

In the case of e = 1 and ¢ = p the polynomial (¢ + T)7b has a
special property that it has nonzero coefficients exactly to the following
monomials:

(34.6) {T°10<6; <7, <pVj,1<;j<0}
This is by the binomial theorem. Recall Eq.(34.3) which says
b
Cara(l) = T(*)q{ (e+T) }\’Yb|*k+1
where d + 1 — deg(7(*)?) = |y°| — k + 1. We claim that
(47) P> d+1—deg(r(x)) > 1 and Cipn(1) £0.

Thanks to Th.(33.6) we have either d < 7’| or d > |y*|. We thus
have to examine these two cases. Note that in any case we have d >
deg(7(%)?) > 0. First consider the case of d < |y’| and then

Wl >d+1>d+1—deg(r(x)?) > 1

As for Cy;1(1) # 0, the inequality |[Y*| —k+1=d+1—deg(7(*)?) > 1
while |y*| — k 4+ 1 < |4°| for k > 1. Therefore the factor of Cy,(1):

(34.8) {(c+ )" }|7b\_k+1

must be a nonzero nonconstant homogeneous. Hence Cgyi1(1) # 0.
Next consider the case of d > |v*| = |7’| + 71 > |7’]. We then have
deg(T(*)?) > d — |°| by Th.(33.3) so that |y’| > d + 1 — deg(7(x)?).
Thus |[y’| > |7°|—k+1. Moreover d+1—deg(7(%)9) = (d—deg((x)?))+
1 > 1. Thus Eq.(34.7) is proven. In both cases Cyy1(1) has a factor
which is nonzero nonconstant homogeneous. We have seen by Th.(33.3)
that Cyyq(1) is a nonzero partial sum of the power series expansion of
(Aat1 — Bay1 — Ca1(2)) + Caza(1) in Koy, T,U(1),U(2)]]. Hence
Ongl (Ad+1 — Bd+1 — Cd+1 (2) + Cd+1(1)) S deg(Cd+1(1)) =d +1 which
proves the theorem of Moh.
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Remark 34.1. We want to pay special attention to the polynomial
Ca+1(1) called the resord-core defined by Def.(34.3). It is nonzero ho-
mogeneous of degree d+ 1 in K[z'] with 2’ = (v, T,U(1),U(2)) accord-
ing to Def.(34.1) . It is a partial sum of the expansion of

vi%h = (c+T)"7% = Agpr — Bast — Caa(2) + Capa(1)
defined by Eq.(34.5). Recall Cyy1(1) of Eq.(34.3) and define
(34.9) Tasr = (07 "07)Capa (1)
= (o) (0 e+ T Y )
where it is important to note that
(1) vy "7 is a unit in Re¢ because &' is metastable,
(2) 7(x) is nonzero homogeneous in Klvy, T, U(1)]
(3) deg(t(¥)?) + (]°| — k +1) = d + 1 which is resordg(G').
@ 0< |l —k+1<|y]
Ty 1 will be called the order-bounding polynomial of the transform G’

for 7 at the metastable point &’. We sometimes write 7% (G’) for the
Tis1-

Remark 34.2. We start from the situation immediately after a metastable
singular point £ appeared according to the notation of the theorem of
Moh, so that we have

34.10 resorde (G') = d+ 1 where d = resord:(G).
3 3

We refer to the regular system of parameters @’ = (v, T,U(1),U(2))
which are chosen according to Eq.(33.2), Eq.(33.3),Eq.(33.7), Eq.(33.8),
Eq.(33.13), Eq.(33.9), Eq.(33.10), etc.

Remark 34.3. When a metastable point £’ is created according to Th.(34.1)
we have the cases of the inequalities of Eq.(34.7), in each of which we
can choose a system of key g-parameters 7'(x) for the transform G at
¢. The T(x) is extracted from Ty,1 of Eq.(34.9) as follows: Having
always |7°| > (d + 1) — deg 7(¥)? > 1, we define and examine 7'(x) in
the following two cases separately.

(34.11) The first case of T(x) = Y (1) as follows:

This is the case of (d + 1) — deg7(¥)? = |y’| —k + 1 = 1. In this case
we have d = deg7(*)? = 0 mod p. The residual factor f of G have

the same initial term as v%7 ()P which is a p-th power. We then have

ine/(Ts1) = ing (r(){(c+T)"h )b
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where b is the nonzero value taken by the unit v, My at &', Hence we
can choose a system T'(x) of key g-parameters to be the singleton:

(34.12) T(x) = Y(1) = {7512 Y17y }

This parameter is indeed a generator of

Lp—ma:r:(Td-i-l) == Lp—max(cd+l(1)) (C Lp—maz(g/)>

where b’ is a residual factor of G" at &'.

(34.13) The second case of T(x) :
This is the rest of the cases in which
VI > (d+1) —degr(x)’ =|7’| —k+1>1

Let A = (d+ 1) — deg 7(%)? and look for T'(x) = Y (\) depending upon
the number A. For this purpose we need:

Lemma 34.2. We have K3 ¢; # 0 for Vj and we let
Py= {(c+T)" },

which is the homogeneous part of degree A of (c—i—T)”b. We consider the
case such that |4°| > X\ > 1. Then there exists no proper K-submodule
L of >, KT} such that Py € K[L].

Thus in the second case Eq.(34.13) we can choose T'(x) = Y/(\) =
Zj KTj to be a system of key ¢-parameters for G" at £'.

Remark 34.4. Now for the sake of notational simplicity we drop prime
from the symbols and write £ for &, x for 2’ and so on. Let us then
note that
(34.14) G = (2| /P) with v¥ =1 (v=10)

with resord¢(G) = orde(g) =d+1

Moreover we can choose h such that

(34.15) ing(g) € K[Lg1]
with Ld+1 = Lpfmam<g) ) Td+1 7£ 0

in the sense of Def.(21.3) where Ty is defined by Eq.(34.9).
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Remark 34.5. We are thus in the situation in which Th.(23.4) and
Cor.(23.5) are applicable to the G of Eq.(34.14) where resords(G) =
d + 1 in this case instead of d of Cor.(23.5). The role of the key ¢-
parameters ¢ of Cor.(23.5) is played here by a nonempty system ex-
tracted from T4, of Eq.(34.9). For instance, ( = T'(x) of Rem.(34.3).
Therefore we are assured:

Theorem 34.3. In the situation of Rem.(34.4) any finite sequence of
fitted permissible blowups of G does not create any more metastable
points for the transforms of G within the inverse images of &', until
after the residual order drops from d+1 to < d.

If the residual order drops < d at any point of the transform, then we
consider that our mission is accomplished by induction on d in virtue
of Moh’s theorem.
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35. ¢-PROSTABLE PRESENTATION

We will use the standard abc-expression of any /%-exponent in the
sense of Def.(20.1) as follows.

(35.1) G = (gll/Y) = ("gll/") = (="v°gll/")

with a chosen system of parameters © = (z,w), 2z = (v,w). Recall that
2 is a system of parameters defining those components of the NC-data
[' which contain £ and that v C z.

We will then use different letters for g, a, b, ¢ and g respectively to
distinguish different /%-exponents. In this section we will be searching
for more special selection of preferable parameters which elucidate some
deeper /%-cotangential structure of G locally at a given point &.

We thus propose to introduce the notion of g-protostable presentation
of a given /9-exponent G of Eq.(35.1).

O Consider a family of the following data given locally at the closed
point £ € Z.

(35.2) §=4{6G:6G()n01),1<i<v+1}

where G and G(i),1 <i < v+ 1, are /%exponents which are expressed
in the manner of Eq.(35.1) as follows:0

(35.3) g = (gll/)
takes the expression Eq.(35.1).

And likewise the {G(7),1 <@ < v+ 1} are expressed as follows:

(35.4) G(i) = (gl /%) = (=*Wg()[1/9)

wlth Za(l) — qu(l)v(z)c(l)

The system § of Eq.(35.2) will be always required to satisfy the
following conditions:

(1) We are given a regular system of parameters x = (z,w) com-
monly for G and for all the G(i). Especially for G itself we are
given z = (v, w) as before.

(2) The n(i),1 <i < v+1, are disjoint and together form a regular
system of parameters n = (n(1),--- ,n(v + 1)) of R,

(3) 1 coincides x of Eq.(35.1) for G, so that z is a subsystem of 7.
(From time to time we disregard the ordering of components to
avoid unneccessary notaional complication.)

(4) n(i) is a singleton for every 1 < i < v but not for i = v + 1.

(5) n(v + 1) = v which could be empty but should not be disre-
garded.
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(6) If v is not empty then it is ordered from left to right according to
the history of their creation. This ordering may be at randam if
no history is explicitly shown. Its significance will be recognized
in later when we talk about prostable transfomation of §.

(7) For some ¢, we could have G(i) = (0]//9) but should not be
viewed as being non-existent so long as 7(i) is given.

(8) Let us recall Def.(??) for the notion of *-full idempotent q-
differentiation. Accordingly we let 9(i) denote the *-full idem-
potent differential operator in

(355) DZ'ffpe*(Rg)[n(i)m(ib)]/pe(RE)[n(ip)] with respect to T](Z)
where 7(7%) denotes (n(i +1),--- ,n(v +1)).
(a) We then require
(35.6) 0(i)(g(9) = &(1) and 2(i)(g(7)) =0, Vj > i.
(b) Let K (i) (resp. R(i)) be the following subfield (resp. sub-
ring) of the function field K(Z) = KO0 of Z (resp. R0 =
Ry¢), defined by
(35.7) K(i) = {p e K(i—1)[0o(:)(¢) = 0}
R(i) = {¢ € R(i —1)[0(i)(¢) = 0}
for1 <i<wv+1,
(c) so that g(j) € R(i) C K(i) for all j > i.
(9) We have
g=glv+1)+> ., 80)
(10) 22 must divide 22® in R for all i and
(35.8) g = > 2073
1<i<v+1
(11) Finally we require
(35.9) resorde(G) = orde(g)
= mini<i<p1{ orde(g(i)) + |a(i) — al}.
Definition 35.1. The family of data § of Eq.(35.2) satisfying all the

conditions stated above will be called a g-prostable presentation of G
at &.

Theorem 35.1. Consider any g-prostable presentation § of Eq.(35.2)
of Def.(85.1). Pick any indexr i,1 < i < v + 1. Then we have an
exTPression

(35.10) gli)e Y o (B)n()n(i)®

0ace () (q)
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where t(i) denotes the size of n(i) (t(i) =1 for alli < v) and €9 (q) =
{a}O <a; <gq,Vj}

Theorem 35.2. Under the same assumption ifi < v (that isi < v+1)
and orde(G(i)) = orde(G) then n(i) is a §-key parameter of G.

Remark 35.1. The last couple (G(v + 1),n(v + 1)) of Def.(35.1) has a
special character in comparison with the other ones. It is sometimes
called b-part of the presentation § of G and denoted by (G(b),n(b)) in
order to show its distinction.

Definition 35.2. Let ( = 2\ v so that z = ((,v). Let us write
220 = (D7) in terms of a(i) of Eq.(35.4). Let 2°® mean ¢#®). This
2%0) will be called the relative p-anafactor of G(i)/F at &.

Definition 35.3. For each G(i) with i < v of the presentation we
define its f-part, denoted by G(f1), which is

G(#i) = (gti)[l/7) where
g(di) = vo0g(i)

Here the cofactor v° of G is expressed by Eq.(35.1) and 7(7) is defined by
Def.(35.2). Note that v® is also the cofactor of G(#1) bacause v™"Vg(i)
has a trivial cofactor.

Definition 35.4. We say that g-prostable presentation § of Def.(35.1)
is f-ezact if n(i) is a f-exact parameter of G(#1) of Def.(35.3) for every
i < v in the sense of Def.(24.1).

Theorem 35.3. If ¢ = p (that is e = 1) then for any given G there
exists a sharp-exact prostable p-presentation § of G at any closed point
€ of Sing(G). In fact, given any prostable p-presentation

{G:6G3),n6),1<i<v+1}
n(1) is necessarily a §-exact parameter of the same G (i) for every i < v.

Definition 35.5. Given G with the parameters z = (v, w) and a g-
prostable presentation § of G at a closed point & € Z in the sense
of Def.(35.1), we define what we will call allowable parametric change
n—n~ for § as follows:

(1) G and z must remain unchanged,

(2) while n(i) and G (i) are changed to n(i)~ and G (i)™ respectively
for 1 < i <, except for n(v + 1)~ = n(v + 1) = v, satistying
all the requirements of Def.(35.1) in addition to the following
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conditions.
(35.11) (i)~ € p(Re)[n(i), n(i®)]
n(i)~ =n(i) mod <M52 + (n(iD)N)Rg)

where we denote n(i*)~ = (n(i +1)~,--- ,n(v+1)~).
(3) z must stay to be a subsystem of

N~ =), v +1)7).
(4) The differential operator d(7) is changed into the *-full idempo-
tent differential operator 9™(7) in

(3512) D'L.ffp:(Rg)[n(i)N’n(iD)N]/pg(Ré)[n(iD)N] wlth T@Spect to n(Z)N
(5) Accordingly g(i) and G(i) are changed into g(:)~ and G(i)~ by

means of 9(¢)™~ instead of 9(¢) for 1 <4 < v+ 1 in the manner
of Eq.(35.6).

Definition 35.6. An § of G at £ is said to be adjusted to a blowup 7
with smooth center D if I = I(D, Z)¢ is generated by n(i) N 1,1 <i <
v+ 1, and z C n with reference to the notation of Def.(35.1). Here if
i < v then n(i) N1 for i < v means either the empty set when n(i) & I
or (i) itself when (i) € I.

Theorem 35.4. If an § of G at & is adjusted to a blowup w™ with
smooth center D then ordp(G) is equal to the minimum of ordp(G(i))
for1 <i<v+1.

Theorem 35.5. For a given § of G in the sense of Def.(35.1), if
7w Z' — Z with center D is permissible for G (and T'-permissible as

always) then there exists an allowable parametric change from n to n™
of Def.(35.5) such that

(35.13) exactly those n(i)~ € I(D,Z)e and n(v+1)"NI(D,Z)

compose a minimal base of the ideal I = I(D,Z) of D C Z at €.
Moreover we have z C 0™ in accord with Def.(35.5).
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36. ¢-PROSTABLE FRONTS

In this section we start with a given g-prostable presentation §
of G at £ in the sense of Def.(35.1) with the expressions Eq.(35.1)
and Eq.(35.4). We have the cofactor parameters v = n(v + 1), say
= (v1,+--,1), of G and the rest of the parameters (n(1),---,n(v))
which consists of w = z \ v and w.

Definition 36.1. For each i we define the relative residual factor f(i)
of G(i)/G, or of G(i) relative to G, to be

(36.1) f(i) = 2*07%g(i) of G(i) = (=*g(i)]|/)
with reference to G = (22¢||/9) with 22 = 27®¢° in the sense of the

standard abc-presentations Eq.(35.4) and Eq.(35.3). Simply for the
sake of comformity to those f(i) we may write

(36.2) f=yg sothat f= Zf(z)

in accord with Eq.(35.8).

Let us refer to Def.(35.2) for the definition of the notation of ¢ = z\ v
and (i) with 220 = (D0 fro each i < v. We write 2°0) for ¢4
which is called the relative p-anafactor of G(i)/§ at &.

Definition 36.2. It should be noted that (i) is divisible by 2°®) and
we let F(i) = 27 PO (f)(4).

Let n(8) = (n(1),--- ,n(v)) = n\ v which is a union of w = z \ v
and w according to earlier notation. This n(f) is also defined by saying

r=n= (n(ﬁ)av)'

Remark 36.1. With n(8) = (n(1),--- ,n(v)) = n\ n(v + 1) we let 2(b)
denote the *-full g-idempotent differential operator

in Dif fr,jpe(reypw With respect to n(4)
where Ry = p®(R¢)[v,n(#)]. Let us note that if ¢ < v we then have
(%)) (£(1)) = 2()(g(i)) = (i)
and hence 0(h)f(:) = f(i). We also have 0(¢)f(i) = f(i) with 0(i) of
Eq.(35.5) for all i < v+ 1.

We pick any integer ¢ > e where ¢ = p°. Let r = p.

Remark 36.2. Consider the p’(Rg¢)[n(t)]-module, denoted by Pvé/n(ﬁ)’
which is freely generated by the p‘-primitive differential operators §(°/9

i Dif fre/ptroymey with respect to v
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They are 6°) in the sense of Def.(5.1) after Th.(5.2) where o € €'(p®).

Consider the following numbers.
(36.3) orde (V77798 (i) = |o| + orde (51798 (i))

which will be denoted by bord’" (§(2)) for each i < v and for every
o € €'(p’). We also define the number

(36.4) tordY(F(i) = orde(6V1(i))
so that
vord ' (F (i) = tord?"(F(i)) + o]

for i <v and o € €(p").

There the symbol §(i) should be thought of just a reference to the
inclusion G(i) € §. The point is that the above numbers are not
determined by G(7) alone.

We then define

(36.5) bord? (F(i)) = minoegt(pe){bordg"/f)(3(2'))}
(366) ﬁOTd,S}Z)(S:(Z)) - minJEEt(pZ){ﬁOnga/e)(g(i))}

These numbers bord.,’ ($(4)) and tord.” (§(7)) depend upon the choice
of /. However the dependence is limited in some sense. We next want
to elucidate this point.

Remark 36.3. The polynomial expressions of g(i) and g(j) in p®(Re¢)[7]
have no common nonzero monomial terms for v +1 >4 > 7 > 1. This
is proven by the equalities Eq.(35.6) following the definition of the
differential operator 9(i) of Eq.(35.6). If we limit ¢ < v then the same
statement is also true for (i) and f(j) because z and v are subsystems
of n by assumption of Def.(35.1). Hence the equality f = ) . f(z) of
Eq.(35.8) is a disjoint sum in the sense of nonzero monomial terms.
Moreover for all (i,0) with i < v and with o € €/(p®), the polynomials
v sl0f (1) are mutually disjoint in the sense of nonzero monomial
terms. Since the leading monomial terms of f(i) are finitely many,
if £ > e then they must be included in the leading monomial terms of
vt (i) for all o € €'(p*) for each i < v. Therefore we conclude

Lemma 36.1. We have
(36.7)  bordP(§(i)) = orde(f(i)) for all{>e for everyi <v
We will write borde(F (7)) for this number Eq.(36.7).

Let us next examine the numbers ford” (F(2)) for £>> e.
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Remark 36.4. Recall that 22f(i) = g(i) with 2 = 2%°v°, and hence
for 1 < v we have 0(i)f(i) = f(i) with the opertor (i) of Eq.(35.6).
Hence the polynomial expression of £(i) in p’(R¢)[n] does not have any
nonzero monomial term belonging to p*(R¢)[v]. Therefore the same is

true with the polynomial expression of 5710f (2) for every £ > e and for

every o € ¢ (p’), The reason is that 579 commutes with 0(i). Hence
we have proven

Lemma 36.2. tord. (§(i)) > 0 for every € > e and for everyi < v.

Definition 36.3. For each (¢,7) with ¢ < v we have a natural map

si o€ €e(ph) = 670E(i) € p'(Re)In(t)]

This map can be extended by Z-linearity as

si € (p)Z — p(Re) (1))
with respect to the inclusion p(R¢)[n(f)] C p®(Re)[n(t)] because of
¢ > e. We then denote by #19(F(i)) the ideal in p¢(R¢)[n(4)] generated

by the image of the extended map. Namely we have
(36.8)

t19(F(0) = si(e@NZ)p"(R)@)] = > si(o)p*(Re)[n()]

ocet(pt)

Lemma 36.3. For i < v the initial form ing(si(0)) is not a g-th
power in gre(Re) for any o € €' (p*) unless it is zero. Moreover it
contains at least one element out of n(i) which is a §-key parameter of

si(0) € p"(Re)[n(4)]-

Lemma 36.4. Consider a pair of integers £ < ¢'. Then for each o €
€' (p*) we claim to have

(36.9) sio) = Y sl (o +p'B)
Beet (p?’' —*)

Corollary 36.5. The ideals ﬁléé)(g(@') are monotone nondecreasing
with respect to €. Therefore for £ > e the ideals as well as the numbers

tord.)) (5(2)) become constant. Note that sord!’) ($@)) = ordg(ﬂly) (5(2)).
Definition 36.4. Thanks to Cor.(36.5) we can now define

(36.10) 1I(F(0) = $19(3(0)) for all £>> e

By the definitions of Eq.(36.6) and Eq.(36.8) we have

orde <ﬁ]§£)(3(i))> = tordP(F(i)) for every £>e
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and therefore we obtain the following definition and equality.

(36.11)  tordg(§(i)) = mines{tord(F(i))} = orde(tls(3()))
Definition 36.5. We define the following symbols

(36-12) ﬂIE(S) = Zlgiguﬁjf(g(i))
forde(§) = mini<ic, forde(§(i)) = orde(tle(3))
and after Eq.(36.7) we define

(36.13) borde(§) = minj<,<, borde(F(7))}
= minlgigy{ordgf(i)} Z Ordg(f)

It should be noted that the index ¢ = v + 1 is excluded.

Definition 36.6. Consider only the cases of ¢ < v. Recall the f-part
G(ti) of G/§ defined by Def.(35.3). Then G(i) is called tfront member
of § if we have
(36.14) orde(G(#1)) = orde(G) and

n(i) is a §-exact parameter of G(41)

in the sense of Def.(24.1). Here it should be noted that the second
condition above is automatic for the special case of ¢ = p by Th.(24.2).

Definition 36.7. For i < v, G(i) is called binitial member of § if we
have

(36.15) borde(§F(i)) = borde(F)

Definition 36.8. We define the ffront size of §, denoted by #(§), to
be the following sum:

ol + #(<v)
where the number |v| = t(G) which is the number of cofactor param-
eters of G and f(< v) denotes the number of those G(i),7 < v, which
are ffront members of § in the sense of Def.(?7?).

00O Let us next examine what we defined above from a point of
view that is a step forward to become globalizable.

We introduce two kinds of differential operators, one denoted by
0(b) and the other denoted by #6. The first one is the *-full idempotent
differential operator 9(b):

(36.16) o) € Diffrjpe(reyp with respect to n(4)

where n(8) = (n(1),--- ,n(v)) =n\ v. The second differential operator
10 is actually a system of operators {#6()} parametrized by the integers
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¢ > e, Namely we let
(36.17) 0l = 3" gl

ocet(p?)
where 67/ are the primitive differrential operators in Dif fr, s, (re)ines))

with respect to the variables v in the sense of Rem.(36.2) after Def.(5.1)
and Th.(5.2).

Definition 36.9. For the g-prostable presentation § of Def.(35.1), let
F denote the set of those ¢ < v for which G (i) is ffront member of §
in the sense of Def.(36.6). Let

g(f) = > s(ti)
ieF
We then define the ideal ezponent denoted by F(#), locally in a neigh-
borhood of £ € Z, as follows.

(36.15) 5() = (&), 1a)
where 4d = orde(g())

Theorem 36.6. If T with D above is permissible for F(8) then we must
have n(i) € I1(D, Z)¢ for every i such that G(i) is ffront of § at &.

Remark 36.5. Refer to Rem.(36.1) for f(i) and f such that g = 2f
with f = >, f(i). Note that f(v 4+ 1) € p°(R¢)[v] and hence
2(0)(f(v + 1)) = 0 with 2(b) of Eq.(36.16). It should be noted that #f
is a partial sum of ?(b)(f. It follows that we always have fd > 0 by
virtue of the lemma (36.2) in Rem.(36.4).

Definition 36.10. The positive integer fid will play an important role
by itself and we write it as

(36.19) #d(§) meaning
td = orde(81(F)) = mings. i<y ﬁordgf)(g(i)) > 0

in the sense of Def.(36.4) and Rem.(36.4). We also define the following
number.

(36.20) fr(§) = ranky, (W +M§d*1)/M§d*1>
where 1 = £1(5).
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37. g-PROSTABLE TRANSFORMATION

We start with a given g-prostable presentation § = { G : G(i),n(i) }
of Def.(35.1).

Definition 37.1. A blowup 7 : 2/ — Z with center D is called
prostable permissible for § at & if the following conditions are all satis-
fied:

(1) m (and D) is permissible in the sense of Def.(18.2) for the ideal
exponent §(f) defined by Eq.(36.18) of Def.(36.9),

(2) m (and D) is fitted permissible for G in the sense of Def.(31.3).
It follows that 7 is permissible for every one of the G(i),1 <
i <v+1, in the sense of Def.(18.2) (not necessarily fitted).

(3) It should be noted that 7 is permissible for the given NC-system
I' as allways.

Remark 37.1. Let us consider the situation in which we are given a /%
exponent G and a fitted permissible blowup 7 : Z’ — Z with center D
for G in the sense of Def.(31.3). Given any g-prostable presentation § of
Def.(35.1), we apply a parametric adjustment to § in order to modify
7 and D to become prostable-permissible, furthermore satisfying the
condition Eq.(37.1) below.

Step I: Adjusting 1 to the center D.

We will make use of an allowable parametric change of § in the sense
of Def.(35.5) in order to have the new parameters adjusted to the given
center D of 7 in the sense of Th.(35.5). We may thus assume

(37.1) z Cn= 1), ,nlv+1) and
a minimal base of I(D,Z)¢ is formed by the members of
{nG)NI(D,Z)e with 1<i<v+1}
Furthermore the ideal exponent §1§ = (#1(F), #d) of Eq.(36.18) of
Def.(36.9) can be kept unchanged with respect to the given the g¢-
prostable presentation §. In fact, since D has normal clossing with

the NC-data I', we can prove that if 9, denotes the *-full idempotent
differentical opperator in

Dif fre)pe(Re)im\e] With respect to v

then for every n(i) € I(D, Z)¢ we have (9,n(i)) € I(D, Z)¢ and hence
we may replace 7(¢) by 1(i) —0,7(¢). The claim of adjusting is obtained
by modifying every 7(i) € I(D, Z), in this manner.

Note that the adjustment makes the given blowup 7 to become ¢-
prostable-fitted permissible in the sense of Def.(37.1).
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We then let
(37.2) z#(D) = 2N I(D,Z)e and z(D) = z\ z(D)
so that (2)Re N I(D,Z)e = (z:(D))Re

Step I1: Choose an exceptional parameter 3.

We first define the transform G’ of G by 7 in the sense of Def.(18.4).
The transform of § will be defined after some more steps, in which
there will be included the definitions of G(i)',i = 1,2,---. However
G(i)" will be defined differently and rarely equal to the transform of
G(i) by 7 in the sense of Def.(18.4). At any rate they will be defined
locally in Z'.

Remark 37.2. Pick any closed point & € 7=1(£). We then choose and
fix an exceptional parameter 3 at the point £’ € Z’ for 7 as follows. Let
A be the last member of {n(1),--- ,n(v + 1)} which contains at least
one exceptional parameter at &'. Then let m be the last index such
that )\, is an exceptional parameter at £&. We then choose 3 = A,,.

Remark 37.3. We can choose an abc-presentation of G’ as follows:

(373) €1/9 = g1/ = g1/
in such a way that 2’ consists of the following
(37.4) 2(1)y, foralli <v+1,
those 37'2(i);; € Mg, for everyi <v+1,
and 3}

while v’ consists of
(37.5) ()N v), foralli <v+1,
those 37(z(i);; €v) € Mg, for every i <v+1,
and “maybe” also 3
where 3 € ¢’ if and only if ¢ does not divide the order of G’ at the generic

point of the exceptional divisor of . (See Th.(19.1).) Incidentally this
order is equal to ordp(G).

Step III: Intermediary parameters 7n°

We next go on to introduce intermediary parameters n° before we
obtain the ultimate transforms 7’ of the parameters n. Recall we have
chosen the paramertric decompositions 7(i) = (1(i)+,7(7);) in the man-
ner of Def.(37.1). Let us then write

n(@)y = @ n(i)i), 1 <i<v+1



104 H. HIRONAKA

We firstly introduce the following symbols:
(37.6)  C(ig) = 37'n(i); — w(ij) with w(ij) € K
such that ((ij) € Mg for all (ij).
where the index (ij) cocorresponding to 37'3 = 1 should be dropped

out of the list if such (ij) should exist. With the range of j for each i
understood as above, we define

(37.7) n°(i) = (n°(i=),n°(i+))
where
W(i=) = n(@); and 7(+) = (i), Jor allf) 1< i< v
In order to define n°(i) for i > v we recall v of G expressed as Eq.(35.1)
and define the partitions of v as follows:
(37.8) v = (vy,vy) with vy =vNI(D,Z)¢
vi = (Ur1, 0 Uagy)
Here we should recall the assumption that 7= with D is I'-permissible
and hence z U v; is extendable to a regular system of parameters of R
and so is vy to the same of Re/I(D, Z)e.
Next define the following symbols.
7(j) = 37 'vr; — x2(j) with x(j) € K
such that 7(j) € Mg for all (5),
and then define T(0) = {j € [1,t(0)] | s(j) #0}
Note that 7(j) ¢ o' if and only if j € T'(h) with reference to v' of

Eq.(37.5) for G’ of Rem.(37.3). With the indices j understood as above
we define n°(i),7 > v + 1, as follows.

(37.9) n°(v+1) = (7(j) for all j € T(H))
and then

5 _ @) dsgv
(37.10) 7mu+m._{® Frey

Recall that always 3 € 2’ by Eq.(37.4). We now define the last member
of n° simply by letting

(37.11) n°(v+3) = .
We have a chain of inclusion as follows:
(37.12) v =m), -, n°(v+3))

in which it will turn out to be very important that if ¢ < v then 7°(4) is
divided into two parts, firstly n°(i—) and then 7°(i+), in accord with
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the definition of Eq.(37.7). It should be noted that if 7°(r+3) is empty
then 7°(v+2) is not and also that 7° is a regular system of parameters
of 7" at &.

Step IV : Differentiations 0°.
Recall that the system 7 is divided into an ordered set of subsystems
as follows:

(3713> 770(1_)7770(1“‘)7770(2_);770(2+)7‘" )
770(7/_)7770<V+)7 UO(V + 1)’ 770(” + 2)? 770(’/ + 3)

Just for the sake of notational simplicity, let us rewrite the same with
new names as

(37.14) 0(1),0(2),6(3),0(4), -,
O(p—1),0(n), 0 +1),60(n+2),0(n+3)

After this change of notation we then define the following *-full idem-
potent operators for all j < pu+ 3.

(3715) 80(]> m ape(Rg)[g(j)ﬂ(]v)]/pe(Rg)[g(]v)] with respect to 9(])
in the manner of Eq.(35.5) with

(37.16) 0G%) = (6 +1), -+ ,6(u+3)).

Here 6(j) may be empty for some i and if it is so then we let 9°(j) = 0.

Let us express the correspondence from f-indices to n°-indices by a
map written as j +— I(j) where I(j) is either (i—) or (i+) depending
upon j where j < pu + 1. Accordingly each 379g(7) is split into a sum
of the form f(j) + f(j + 1) for each i < v as follows:

(37.17) 37%()=f(j)+ f(j+1) where
I(j) =i— and f(j) = 0"(j)(37g(i))
I(j+1) =i+ and f(j +1) =35> — f(J)

and we let f(u+1) =379g(v+1).
Moreover for : > v+ 1 and 7 > pu+ 1 we let

(37.18) flu+k)=gv+k) where k=1,2,3.
We define g?(j),1 < j < p+ 3, by induction on j as follows.
(37.19) g’(1) = "()f(1) = f(1), and for j>1

g'(7) = () £0) + Licney ( Ticas, (id = 0°(a) )) £(K) ).
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for j < pu, while for 7 > 4+ 1 we let

(37.20)  F = f(u+1)+ Z( [[ Gd—d@ f())

1<k<p+1  k<a<p+1

and define
(37.21) g'(p+1) = P+ 1)F
g'(n+2) = F(pu+2)(F-g’(p+1))
g’(v+3) = P(u+3)(F—g’(p+1)—g’(n+2)

(37.22) g= Y &0

1<i<p+3
where g’ of G’ is defined by Rem.(37.3) and it is only up to equivalence
of Eq.(16.1). The equality Eq.(37.22) may be assumed because 7’ is a
regular system of parameters of R and Ker(Nu;0°(5)) = p°(Re).

Step V: Express G/(j) for all j.

Let I be the transform of I' by 7 and choose the system of I"-
parameters z’ of Eq.(37.4) at ¢’ € Z'. We can then write abc-expressions
of the /%-exponents G?(j) as follows:

(37.23) G°'G) = ("G I/*), 1<j<pu+3, with
. 04 ~c?(j .
() = ™GV ).
where v%(j) C 2/, b%(j) and c’(j) are uniquely determined by the
chosen 2’ and g?(j). This is so by virtue of Def.(19.1) and Def.(19.3)

following Th.(19.1).
Finaly we take the essential subsequence of

(37.24) § = 1{g:(@G)n"U1), 1<j<nu+3}
This simply means deleting those pairs havmg n°(j) = 0 for j < u+3.
Note that we keep the last pair even if n°(u + 3)(= v’) happens to be

empty. By doing this we lose nothing essential out Eq.(37.24). The
resulting sequence will be denoted by

(37.25) § = {0 :(G6)nG),), 1<i</+1}

Definition 37.2. We see that § of Eq.(37.25) is a g-prostable presen-
tation of G’ at & € Z'. We will call it the g-prostable transform (or
simply transform) of the given g-prostable presentation § of G at & by
the blowup 7. It should be noted that G’(i) may not be the transform
of G(i) for any ¢ while G’ is the transform of G.
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38. p-PROSTABLE CASES

Throughout this section we are primarily interested in the fitted
permissible transforms of a /P-exponent, i.e, ¢ = p and e = 1:

(38.1) G = (g||/*) with g = z*g = 2"*v°g

locally expressed at a given closed point § € Sing(G) C Z in the man-
ner of Eq.(20.1) of Def.(20.1). We also choose and fix a p-prostable pre-
sentation of G which will be assumed f-ezact in the sense of Def.(35.4)
with reference to Th.(35.3). The G will be expressed as

(38.2) § = {G:06) i) 1<i<v+1)
locally at ¢ in the manner of Def.(35.1), of which
G(i) = (g()[|/”) with g(i) = 22V g(i) = 2V (i)*Wg (i)
in the manner of Eq.(35.4).
Consider a blowup 7 : Z/ — Z with center D > £ which is prostable-
fitted permissible for § at £&. We then examine the transforms G’ of

G and § of § by 7 locally defined at any chosen closed point & €
7€) N Sing(G'). We write

(38.3) § = {g5(G0),n@),1<i<v}
locally at & in the manner of Eq.(37.25) of Def.(37.2), where
(38.4) G = (g'|/?) withg =g’ = 2™y

and G'(i) = ('(D)]/*)
with g'(i) = Z’a/(i)g/(i) _ Z’qb/(i)vl(i)d(i)g/(i).
Remark 38.1. We have the following cases:

(1) Case I: We have resordg/(G') > resorde(G).
(2) Case II: We have resordg (G') = resorde(G).
(3) Case III: We have resordg (G') = resords(G) — 1.
(4) Case IV: We have resordg (G') < resords(G) — 1.

If Case I happens then by Moh'’s Th.(34.1) we must have resordg (G') =
resordg(G) + 1 and v’ of Eq.(38.4) must be empty by Prop.(33.1). It
should also be kept in mind that if Case IV happens then our in-
ductive strategy is considered successful by Moh’s theorem and by the
Prop.(38.2) proven below. The undesired phenomena are any indefinite
sequences of alternately repeated Case I coupled with Case III possibly
having some additions of Case II inserted between such couples.

Remark 38.2. Recall the exceptional parameter 3 which is selected in
the manner of Rem.(37.2). Here the point is that the index ¢ with
3 € n(i) is uniquely determined by the choice of the presentation § of
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the given G. Viewing 3 as an element of R¢ as well as that of R} we
consider the following cases:

(1) Case A: 3 € v. Equivalently 3 € n(v + 1).

(2) Case B: 3 ¢ v. Equivalently 3 € n(i) with some i < v.

(3) Case A" 3 € v'. Equivalently ord:(G) # 0 mod p.

(4) Case B': 3 ¢ v'. Equivalently ord¢(G) = 0 mod p.

Proposition 38.1. If there exists i < v+ 1 such that ords(G(i)) =
orde(G) then n(i) must contain at least one §-key parameter ¢ of G at
&, It follows that the Case I cannot happen for any fitted permissible
transform of G at any closed point & € =1 (&) N Sing(G'). Moreover
the transform (' = 371 of the given parameter C is a #-key parameter
of G at & unless we have Case III or Case IV.

Proposition 38.2. Assume that v is empty. Then there exists i < v+1
having the same property of Prop.(38.1) so that we have only Case 11
unless Case III or Case IV happens after any fitted permissible blowup
for g.

Proposition 38.3. Consider a fitted permissible blowup © : Z' — Z
for G with center D and a closed point £ € m—1(£) N SingG" with
the transform G' of G. Assume that the chosen exceptional parameter
3 for §/G is t-key parameter for G. Then either Case IV or Case
111 in which the residual factor f' of the transform G' contains a key
parameter transveral to the exceptional divisor of w in Z'.

Remark 38.3. Note that the assumption of Prop.(38.2) is satisfies at
any metastable point whence v is empty. Then Prop.(38.1) becomes
applicable. Therefore thanks to Moh’s Th.(34.1) and Prop.(38.1), we
see that after Case I have occured our next inductive objective will be
accomplished if the residual order can be made to drop two or more
(either once Case IV or twice Case III before the next Case I).

After Case I we may have Case II repeated and then possibly Case
IIT followed by Case II repeated again. After such successions we may
have Case I again. Such a cycle of Cases I-II-III-II-I may be repeated.
Therefore our task is to show such cycles cannot repeat indefinitely
in order to make a successsful step forward according to our inductive
strategy. Thus our immediate interest is to clarify what are possible
(or rather impossible) courses of Cases after a Case I had occured.

Keeping in mind this Rem.(38.3), we start with a situation that is
immediately after Case I took place for a /P-exponent furnished with a
/P-presentation locally at a given closed point. In this sense we choose
our inital assumption and the notation of ¢ furnished with §, which
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are the ones arising in the special situation above. Their detailed ex-
pression follow Eq.(35.2), Eq.(35.3) and Eq.(35.4).

Remark 38.4. Let us introduce the following number and keep it as
an important reference for comparison with corresponding numbers of
subsequent transforms.

(38.5) d=d(g) = <7’esord§(g) at the starting poz’nt).

We will be applying a fitted permissible blowup successively one
after another. However for the sake of simplicity we may choose a
notational change back at the each of later steps during such a sequence
of successive transformations. In any event such a notational reset
should be understood only for the purpose of clarifying essential effects
taking place at a particular step. However one thing we must keep in
mind is that the number called d is the one chosen and fixed at the
very stating point of Eq.(38.5) and the meaning the symbol will not be
changed later.

Remark 38.5. Quite generally we will be working with a fitted permis-
sible blowup denoted by

w:Z — Z with center D > &

for G. We then write G’ for the transform of G and pick a closed point
¢ e &) N Sing(G') at which we want to examine the effect of .
We also write the transform §’ of § by 7 in the sense of Def.(37.2). We
will also use the following symbol.

(38.6) d =d(g) = (resorc@(Q'))

Remark 38.6. We have defined numbers b(d) and £(d) of G by Eq.(36.12)
and Eq.(36.13). We will then write b(d)" and £(d)’ for the corresponding
numbers of the transform G’, and we also write other kind of numbers
in a similar way. We often talk about a sequence of permissible blowups
which will be expressed as w : Z — Z. We will then write d G, o, 8’
#(d), b(d) and so on for the final transforms by .

We now go on into results which requires somewhat delicately case-
dependent reasonings.

Remark 38.7. We first divide cases in terms of the resorde(G) as follows.
First is the case in which resord¢(G) =0 mod p.
Second is the remaining case in which resords(G) # 0 mod p.
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39. IF RESIDUAL ORDERS =0 mod p
Let us forcus our attention to the first case of Rem.(38.7):
resords(G) =0 mod p

Remark 39.1. Assuming this, we have the following three cases in each
of which we want to examine the transform G’ of G at a closed point

¢ € Sing(g") Nnr1(¢).

Case(a): There exists ¢ < v such that
orde(£(i)) = orde(f) = resorde(G) = d

with the relative residual £(j),1 < j <wv+1, of Def.(36.1). This is the
case of Prop.(38.1) after Prop.(38.2) in which Case I cannot happen,
while Cases II, III, IV, can occur at £’. In Case II, G’ is in Case(a)
again at £'. In Case III for the first time (possibly after having Case
IT repreated) we are still having Prop.(38.2) valid and Case I cannot
follow. In principle it is possible to have Case(a)-Case II-Case(a) repeat
indefinitely. This problem will be resolved by the setup of our global
inductive strategy which will presented in later sections.

Case(b): For all i < v we have
orde(£(i)) < orde(f(v + 1)) = resords(G) = d

while the chosen exceptional parameter 3 of Rem.(37.2) belongs to 7(7)
with 7 < v.

By the definition of § the relative residual (v + 1) always belongs to
p(R¢)[v]. Then by the assumption on 3, we must have 37'v; € My for
at least one component v; of v and hence Case I cannot happen. Unless
Case III or Case IV happens the transform G’ keeps the same order and
it stays in the first case of Rem.(38.7), either Case(a) or Case(b). If
Case III happens for the first time the transform G will have empty
cofactor ¥ because d =0 mod p. We thus end up in Prop.(38.2) with
d =d—1whichisa happy ending case by our global inductive strategy,
too. However here in principle we can have the cycle Case(b)-Case II-
Case(b) repeated indefinitely. This problem will be again solved by our
global inductive strategy which will be shown later.

Case(c): For all i < v we hace
orde(f(i)) < orde(f(v+1)) =d while 3en(v+1)=0v

Again Case I cannot happen until after Cases I1I or IV had happened
because the cofactor remains empty. Even if Case III happened for the
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first time possiibly after repeated Case II we still have the case of
empty cofactor at the step immediately after. There Prop.(38.2) and
Prop.(38.1) by the same reasonings as Case (b). Thus the first case of
Rem.(38.7) is the problem of the type which can be taken care of by
our global inductive strategy shown later.
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40. IF RESIDUAL ORDERS # 0 mod p

Let us next examine the second case of Rem.(38.7) which assume:
resords(G) #0 mod p

Remark 40.1. In this case, too, we start with empty cofactor v and
hence a nonempty system of f-key parameters for G. Then Case I
cannot happen so long as only Case II continues to occur. In fact,
by Th.(23.4), the transforms of those f-key parameters remain to be
f-key as long as the residual order is kept unchanged although the new
cofactors will not be empty. Therefore the next change of the residual
order must be either Case III or Case IV. Since Case IV means that our
inductive task is accomplished by virtue of Moh’s theorem Th.(34.1),
we will pay special attention to Case III occuring for the first time or
more generally at a similar situation after having repeated residually
up one and then down one to the original number d of Eq.(38.5).

Proposition 40.1. We start with the situation in which resorde(G)
is d Z 0 mod (p) and G possesses at least two independent §-key
parameters, say 3 and (. Moreover assume that 3 happen to be the
chosen exceptional parameter with respect to the the closed point &' in
7 1&) N Sing(G') where w : Z' — Z is a fitted permissible blowup for
G. We then claim that the transform G' of G by m at & will have either
one of the following:

resordg <d—1, that is Case ana we are done.

1 de(G') <d—1, th Case IV and d

(2) resordg(G') =d — 1 and g of the abc-express Eq.(35.1) for G
at & can be written in the form g = hO+ 3h(1) where
(a) letting h0' = 37910 and h(1) = 379 h(1) we have both

h0" and h(1)" contained in R’ = Ry,

(b) d—1 = orde(h(1)) = orde (h(1)') and orde(R0") > d —1,
(c) letting © be the *-full idempotent differential operator in

Dif frjprym\; with respect to 3

we have 9(h0") = h0' and d(h(1)") = 0.
Here n = (n(1),--- ,n(v + 1)) is the system of parameters of a
chosen § which is adapted to the center D and contains both j
and .

Proposition 40.2. Assume that resords(G) isd # 0 mod (p) and G
possesses one and only one §-key. If the chosen exceptional parameter
is the §-key, then we have only Case III or Case IV. In the case of Case
11T we have one of the following two:
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(1) the transform G' of G is prone to generic down type (depennding
upon whether § vanishes on the next center or not) at £’ in which
case we must haved —1 =0 mod (p).

(2) the transform G' has at least one §-key parameter at &'

Remark 40.2. For the sake of notational simplicity we reset our symbols
to those of G/F at the step immediately before Case 111 happened for
the first time. We also reset the other related symbols accordingly.
We write the next blowup as 7 : Z' — Z with center D and then the
transforma G'/§" of G/F by m. We will then examine the following
cases of G'/F at a closed point & of 771(£) N Sing(G).
Case(A.0): 3€¢ vandd—1=0 mod p
Case(A1): 3€ v and d—1#0 mod p
Case(B.0): 3¢ v and d—1=0 modp
Case(B.1): 3¢ v and d—1#0 mod p
We first focus our attention to the cases: Case(A.1) and Case(B.1).
Namely assume resordg(G') =d —1%# 0 mod p with d of Eq.(38.5).

In this case an imporant role is played by the ffront size #(F) of §
in the sense of Def.(36.8).

Lemma 40.3. Ifd — 1 # 0 mod p we can then in principle have a
new type of cyclic repetition:

(40.1) {d---(d—=1)---d---} in terms of residual orders

which repeatedly involving only in the last member Q~(17 + 1) of the
transforms §. Moreover each time we have such a cycle we have an
increase of the §-front numver. Therefore any repetition of Eq.(40.1)
ends after a finite number of times.

Lemma 40.4. I[fd — 1 =0 mod p and 3 € v then immediately after
the first Case III we have

(40.2) resorde(G') = d—1
v'o= (v].--- L) with >0
ing (g (v +1)) = ing(5)3!
so that we have
JgW+1) = ¢ + uov)!
where w is a unit of p(Re)[V'] and ¢ € p(Re)[vY, -+, vy _,] withordg(¢) > d.

3€n(i) with i <v
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in terms of the exceptional parameter 3 chosen by the definition of
prostable transformation as follows:

Case(Aa): 3 €n(i) with i <v

In this case 3 becomes the new member of v/, say the last member.
Since ¢ < v we must have

3’111]- € My ¢ (say = M') for all Vj

It follows that 3~4g(v+1) does contribute nothing to the initial form of
g’ because the former has order > d while the latter has order = d — 1.
Moreover we may restrict our interest to the case in which G" does
not have any f-key parameter for if otherwise the next residual order
change would be down to < d — 2. Thus the case of our interest is that
any 3~ 9g(j) with i # j < v does contribute nothing to the initial form
of g’. In fact

(40.3) ordg (f'(7)) >d —1 forall i £Vj <V

where f'(j) denotes the j-th relative residual factor of §'. Finally the
contribution of 379g(7) into g’ is exactly its partial sum of those terms
belonging to p(R')[3]. Therefore according to the definition of prostable
transformation we conclude

(40.4) g +1) = ¢ + uvl, !
where
¢ € p(R)[vy, - vy ] with ordg(¢) > d
and w is a unit of the local ring p(R')[v']
where R' = Ry ¢ and t' is the size of the cofactor parameters v’ of G'.

Incidentally in this case we have v’ = (37 'v,3) where 3 = v},. As for
the next blowup on Z’, say n’ : Z” — Z’ with center D’, we must have

(40.5) vy vanish on D'

because of Eq.(40.4). Therefore D" cannot be generic-down type. If the
chosen exceptional parameter is not v;, then Case I cannot happen for
the blowup following after 7. If if is then we will lose the parameter and
gain f-key parameter while the residual order go down to the original
d. This leads to a new type of cyclic repetition:

(40.6) {d---(d—=1)---d---} in terms of residual orders

which repeatedly involving only in the last member G( + 1) of the
transforms §.
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Sinced —1 =0 mod p, what follows after each Case I1I must be the
case of blowup with generic-down center. We will set our global strat-
egy in such a way that the cycle Eq.(40.1) cannot repeat indefinitely.

Case(Ab) : 3€ v

Remark 40.3. When Case III happens and Case II follows possibly
repeatedly, the result becomes more delicately case-dependent. In any
event we are interested in the case in which the residual order is kept
equal to d — 1 after the transformation as above.

Remark 40.4. After Case I1I occured for the first time as above we will
continue our work by dividing the problem into the following two cases.
Case(n-y): The case in whichd # 0 mod p whiled —1 =0 mod p.
The cofactor has been augumented with one new variable created
by each blowup from the very starting point untill after the occurance
of the Case III, although some old cofactor variables may be removed
when one of them turns out to be the exceptional parameter chosen
there for the blowup. After the Case III no such new cofactor variables
are created into the transforms of subsequent cofactors. This is so by
d—-1=0 mod p.
Case(n—n): The case in whichd Z 0 mod pandd—1%# 0 mod p.
In this situation all the way from the beginning to the end the co-
factor is augumented one by one with newly created variable while
possibly some old cofactor variables may be removed when the excep-
tional parameter belongs to the previous cofactor.

Remark 40.5. Let us assume the Case(c) of Rem.(?7). We then have
the following subcases to investigate separately.

Case(c, 1) when v is a singleton (3). Then we claim that there can
occur only Cases IV

Case(c,2) when v has more components. In this case, Case I can
happen whence resordg (G') = resords(G) + 1 and v' = (. We then
claim that if so then G’ is either in the Case(a) or Case(b). Moreover
if G" in Case(b) we claim to have |[v'| < |v| where v’ is the cofactor
parameter of G' and | | denotes the number of components. Therefore
we claim that Clase(c) cannot occur infinitely many times.

Definition 40.1. Because an important role will be played by the
number |v| we will denote this number by #t(G).



116 H. HIRONAKA

41. p-PROSTABLE MONOMIALIZATION

Theorem 41.1. Assume that d = 0 mod p at the starting point of
FEq.(38.6). If a global strategy is set in such a way that no sequence
of fitted permissible blowup is allowed to contain any infinite chain of
only Case II locally above the given point & then any such a sequence
must contain a step at which we have ordg(G) <d — 1.

Recall Rem.(39.1). Thanks to the theorem we are only left with the
problem in the case of d Z 0 mod p. In this case we ask questions
about what we may have and what we should then do after a finite
sequence of fitted permissible blowups @ : Z — Z applied to G and §.
Although all object and numbers must be marked by ~, we restart with
all the notations simplified by droping ~ everywhere.

Remark 41.1. We may restart with the following simplified notation
but with the more general assumptions.

(1) We have
(41.1) d>d >d-1

in the sense of Eq.(38.5) and Eq.(41.1). For the inequalities
we should refer to Prop.(38.1), Prop.(38.2) and Th.(34.1). We
consider that our job done if d < d — 1 even after a finite
number of repeated blowups.

(2) We write cofactor parameters v = (vy,---,v¢) of G with t
it(G) of Def.(40.1). After a blowup we will write t’ for £t(G’)
Keep it in mind that at the very starting point we had t = 0
and v = ().

(3) Let us recall that by means of the relative residual factors F(i)
of Def.(36.1) we have defined the number borde(§) of Eq.(36.13)
in terms of Eq.(36.6) and Eq.(36.7). For short we write

(41.2) b(d) = borde(F) = mini<,ordeF(i) > ord:(F) >d

We will also use the number forde(§) defined by Eq.(36.12) of
Def.(36.5. For short we write

(41.3) 8(d) = forde(3)

Incidentally the number b(d) and £(d) depends upon the choice
of a prostable presentation § of G at the given &.
(4) Remember that we must have

(41.4) t(d) = b(d) = d at the starting point
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because v = () and g(v + 1) = 0. However at any of the later
steps we have only the inequlities:

(41.5) 0 < #(d) < b(d) < d in general

in virtue of Eq.(36.11) after Lem.(36.2) and in comparison of
Eq.(36.5) vs Eq.(36.6).

Remark 41.2. Assume d # 0 mod p at the starting point. Prop.(38.2)
holds and hence Prop.(38.1) is valid at the starting point. Namely we
start with a nonempty system of f-key parameters of G. Hence Case
I cannot happen until after Case III or Case IV occurs. Consider the
case in which only Case II occur repeatedly for a finite number of times.
There each time of blowup a new cofactor parameter is created while
there remain f-key parameters which are transforms of those at the
starting point. Case I cannot happen there. When Case III happens
for the first time we gain a new cofactor parameter but we may or may
not lose one of the earlier f-key parametrs. This double possibility
about earlier ones will be made clearer below.

Remark 41.3. We then need to examine the following two possibilities
separately.

(1) d—1=0 mod p.

(2) d—1%#0 mod p.
Now for the sake of notational simplicity, the transformed /P-exponent
will be denoted by G again though we now have d(G) = d—1. Similarly
the transformed /P-prostable presentation will be newly denoted by .

Remark 41.4. We consider the case of d — 1 =0 mod p. Since we are
at the point immediate after the first Case III, g(v 4 1) must be in the
following form.

glv+1) = ¢ + Cvd!
where ¢ € p(Re)[vy, -+, ve—1] with deg(¢) <d —1 and C € K.
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Remark 41.5. We have
ing(g(v+1)) = Z uping (vg) 4!
keA
where ¢, are nonzero elements in K and A C [1, t].

Definition 41.1. Under this condition Eq.(??), the set {vy, k € A}
is uniquely determined and each vy, of Eq.(??) is called a b-frontier
parameter of §. This notion, up to a unit multiple, uniquely determined
by G and independent of the choice of §F. We thus call A the frontier
index set and {vg, k € A} the b-frontier parameters of G

Lemma 41.2. Let w : Z' — Z with center D be a fitted permissible
for G. Then every b-frontier parameter v; is in the ideal I¢(D,Z)°.
Moreover if resordg (G') = resorde(G) with the transform G' of G by
7 then the transform v = 3 v, is a b-frontier parameter of G' at &
provided that v, € Mg and hence v} € v'.

The following theorems are based upon the conditions and assump-
tions of Rem.(41.1).

Theorem 41.3. If resords(G) < resordy(G') then & is metastable
of G for m at &. Moreover we have ordg(G') = orde(G) + 1 and the
cofactor parameters v’ in the abc-expression Eq.(38.4) of G' is empty.

Theorem 41.4. Let us assume
(41.6) resords(G) = 0 # 0 mod p

where D is the number of of Eq.(41.3). Moreover assume that the chosen
exceptional parameter 3 is a §-key parameter of G. We then have that
ordg (G') <o —2.

Theorem 41.5. Assume Eq.(41.6). Moreover assume that |v| = |A] >
0, i.e, the system v of cofactor parameters is not empty for G and every

member of v is a f-frontier parameter of G. Then any & cannot be
metastable for G' at &'.

Theorem 41.6. If the chosen exceptional parameter 3 is any one of
the b-frontier parameters then we have either ordg(G') < 0 —2 or &
must be metastable.

oood
Lemma 41.7. Let us asssume
(41.7) ordg(G') = 9—1 =0=0 modp

We can then find Ambient Redutive Cleaning of which the final trans-
form satisies the second assumption of Th.(41.5).
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Remark 41.6. (1) Ambient Redutive Cleaning.

(2)

Consider the case in which
d#Z0 modpandd=d—-1=0 mod p.

We then apply ambient reduction theorem to each hypersuface
one of z; = 0 with z; which is not any of the frontier cofactor
[-parameters. Repeat this. We then can reach the state in
which v consists of only b-frontiers.

No problem if exceptional becomes new cofactor

Proposition 41.8. Assume that ords(G) = d # 0 mod p with d of
FEq.(38.5). Let . be the index such that the chosen exceptional parameter
3 belongs to n(t). We then have the following cases.

(1)

(2)

(3)

(4)

L < v andjis af-key parameter of G. Assumed % 0 mod p, in
particular © = d. In this case we claim that ordg(G') < 9 —2.
There results the case that fits our inductive proof by virtue of
Moh’s theorem.

Assume 0 = 0 mod p, so that we must have ® = d — 1. In
this case, for every sequence of fitted permaissible blowups with
sequence of corresponding singular points, metastable points do
not occur provided that the orders do not drop belowd. Moreover
if the order drops below then it becomes the case that fits our
inductive proof by virtue of Moh’s theorem.

v < v, 3 is not any f-key parameter of G and ordg(G') =
orde(G) = d. Now let V(+) be the set of those j such that
v; € I¢(D,Z) and let V(=) = [1,£] \ V(+). Since v < v we
have 37'v; € Mg for all j € V(+). Thus v' is the union
of {37 'vj,j € V(+)} and {vy,k € V(=)}. Moreover since
orde(G) = d # 0 mod p, 3 is taken out of n(¢) and included
into v'. We thus have |v'| = |v| + 1.

v < v, 3 is not any f-key parameter of G and ordg(G') <
orde(G) = d. In this case, too, we claim to have all of the
same as previous case. Only difference is that in this case we
gain 0 < d and

Jw+1)=V"+uy3°+ Zukv’,g
keA!
with ordg (V') > 0, wy, are units in p°(Re)[v] and A’ is some
subbset of the indexset of v'. Incidentally if ordg(G') < d —1
then it becomes the case that fits our inductive proof by virtue

of Moh’s theorem. In other words, it is enough to examine the
case with ordg (G') = d — 1. Either the set A" or A"U{0} may
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or may not be the b-frontier index set of the transform §' of §,

but A"U {0} contains the b-frontier indez set.

(5) ¢ < v, is not any §-key parameter of G and d—1 = ordg (G') =
orde(G). In this case there is no possibility of metastable points
because 3 is mot a member of v. For more details we need to
examine the following two subcases separately.

(a) d —1 = 0 mod p. Then 3 makes the singleton n'(v') =
n°(v+2) of Eq.(37.10). It is not included in v'. Let V(+)
and V(—) be the same as before. Since v < v we have
37wy € Mg for all j € V(+). Thus v' is the union
of {3 'vj,j € V(+)} and {vx,k € V(-)}. Here the b-
frontier parameters are among those v; with j € V(+) by
Lem.(41.2). In any event we have |v'| = |v|.

(b) d—1# 0 mod p. Thenn°(v+2) is empty and 3 is included
inn (V' +1)=v". We have [V'| = |v| + 1.

(6) v <wv, 3 is not any §-key parameter of G and ordg(G') < d — 1.
There results the case that fits our inductive proof by Moh’s
theorem.

(7) 3 € v (so that v = v+ 1 and v is not empty), orde(G) =
orde(G') = d. 3 is included inv'. Let us write v = (v(+),v(—))
with v(+) =vN I(D, Z) as before. Let v(+) = {v;,j € V(+)},
and v(—=) = {v;,j € V(=)}. Then write 37 'v; = v} + w,
where v; € Mg and w € K. Write v(+) = (v(+0),v(+%))
where v(+0) = {v}|j € V(+),m; = 0} and v(+x) = {v}]j €
V(+),w; # 0} from which we exclude the one for v; = 3. Then
v = (v(+0),v(—),3). Ifv; # 3 is a b-frontier for G at & then
J € V(+0) by Lem.(41.2) and v} is a b-frontier for G' at £ .
However 3 may be or may not be a b-frontier parameter for G
at &'.

(8) 3 € vorde(G)=d and orde(G') =d — 1. In this case, too, j is
included in v' but it may be or may not be a b-frontier parameter
for G" at £'.

(9) 3 € v, orde(G) = d and orde(G') < d — 1. There results the
case that fits our inductive proof by Moh’s theorem.

(10) 3 € v, orde(G) = orde(G') = d — 1. Let us then examine the
followin three cases separately.

(a) d—1= 0 mod p and 3 is not any of the frontier members
of v.

(b) d—1= 0 mod p and 3 is a frontier member of v.

(c)d—1%# 0 mod p

(11) 3 € v, orde(G) =d — 1 and orde(G') < d — 1.
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(12) 3 € v, orde(G) =d —1= 0 mod p and ordg(G') = d. This
is the metastable case. However we claim that G' has a longer
system of frontier §-key parameters than that of the /P-exponent
preceeding G.

Proposition 41.9. Under the assumption of Rem.(41.1), the next fit-
ted permissible blowup 7 for G cannot have any metastable point in
7€) in the following cases:

(1) 0 =d, divisible by p. Morover either v is empty or there ezists
a nonempty system of §-key parameters of G at €.

(2)0 = d —1 and 0 is divisible by p. The reason is that the
equality with the divisibility can only happen when one of the
resordg (G(i) with i < v drops to d — 1 because the new ad-
dition to n'(v + 1) must be a power of a single element up to
a unit-multiple. Observe this fact immediately after d drops to
d — 1 and at least one f-key parameters of G at £ is created and
upheld afterwords. (Examine the following two cases separately:
(a) 3¢ v
(b)se v
In this second case,

(8) 0 >d—1 and 3 € n(i) with i < v is a frontier §-key parameter
of G. n

(4) the only one remaining case is that ® =d — 1 and it is not

(1)3 ¢ v
(2)3€wv

In the second subcases, investigate

|frontier §-keys)| + 1(v)|

Proposition 41.10. Under the same conditions as of Prop.(40.2) then
the frontier rank of §' at &' is bigger than that of § at &.

Remark 41.7. In fact, we reason as follows:

(1) Consider the case ® = d. Then we must have a nonempty
system of f-key system for G from among the 7.

(2) Consider the case @ = d — 1 so that A is not empty. Hence v
is not empty. We have one and only one of the following two
cases:

(a) 0 is not divisible by p. In this case m cannot have any
metastable point in 77(€) because Y, 5 @b cannot be
any partial sum of [],(0; — 60 —1)7%
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(b) disdivisible by p. In this case metastable point can happen.
However the transform becames generic-down case. Then
the length of f-key parameters definitely increase. This
cannot repeat indefinitely. (Use the fact that if metasta
happens then all the v transform to units.

Proposition 41.11. Under the assumption of Rem.(41.1), let us pick
& en (&) c Z'nSing(G') for the transform G' of G by the next fitted
permissible blowup 7 . Z' — Z with center D > & and we consider v of
3 € n(v) with the chosen exceptional parameter 3 at &'. Then always v'
of G' is equal to the singleton (3).

Proposition 41.12. Under the same assumption of Prop.(40.2) there
are the following cases on G'.

(1) resordg(G') = resorde(G) and §-key parameters of G are trans-
formed into those of G'.
(2) resorde(G') < resorde(G). There then exists the following two
subcases:
(a) There exists a §-key parameter of G which is linearly inde-
pendent of 3 modulo Mg.
(b) There is no such parameter.
In the case (1 — a) (subcase (a) of case (1)) G' possesses at
least one f-key parameter. In the case of (1,2) there is no other
restriction on §. In (2,1) and (2,2) it is enough to consider
the case of resorde (G') = resords(G) — 1. In (2,2) the number
resordg (G') (=d — 1) cannot be divisible by p. In (2,1) we have
its subcases as follows:

(1) G is pseudo-stable along the center D so that d =1+ Ap with
a positive integer A. Hence we have resordy (G') = Ap.
(2) G) has at least two independent f-key parameters.

Proposition 41.13. Under the assumption of Prop.(41.11), Assuming
that resordg (G') > resorde(G) — 1 we have one of the following cases:

(1) orde(G(1)) = orde(G), resords(G') = resords(G) — 1 and G’
contains at least one f-key parameter.

(2) orde(G(1)) = orde(G), resorde(G') = resords(G) —1 and G’
does not contain any §-key parameter. In this case ing(g') €
p(Rer) and resordg(G') is divisible by p.

(3) orde(G(1)) > orde(G) and the same condition of Rem.(??) is
maintained with the the same number d by the transforms G
and §.

(4) resordg (G')resordes(G).
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There exists one and only one index ¢ with 1 < ¢ < v such that

orde(G(i)) = orde(G).

Theorem 41.14. Finally the problem boiles down to the games only
to the case of “all in v”

Definition 41.2. In the Case I, we must have 3 € v with v of G itself.
Hence either Case A or Case B is possible.

In the (case II), every one of the (cases ABC) is possible. In both of
these cases, if orde(G(1)*) > orde(G(2)*) then we let 7/(i) = n*(4) for
i=1,2, and 7'(3) = n*(3) Un*(4). If orde(G(1)*) = orde(G(2)*) then
we let 7'(1) = 0, 7'(2) = (1) Un*(2) and 1/(3) = n*(3) Un*(4).

In the (case III), if orde(G(1)*) > orde(G(2)*) and orde (G
orde(G) — 1 then we let 7/(i) = n*(i) for i = 1,2, and 7/(3) =
7 (4). 1 0rder(G(1)") < orde (G(2)") and orde (G(1)°) —
then we let 1/'(1) is empty, '(2) = n*(1)Un*(2) and n'(3) = 77*(3)U77*(4).
If orde(G(1)*) > orde (G(2)*) and orde (G(1)*) = orde(G) then it must
be the (case C) and ordg (G(3)*) = orde(G) — 1. The we let n'(1) =
n*(1) Un*(2) and 7/(2) = *(3). We let 17/'(3) = n7(4).

In the (case IV), we let ( ) = 0 and let 7/(2) be the system of either
f0-parameters of G’ if it is not empty, or f(1)-parameters of G’ if other-
wise. We let 17/(3) be the system of those parameters (free to choose)
which together with 7/(2) make up a regular system of parameters of
Ré'/.

Remark 41.8. Let m : Z/ — Z be a blowup with center D which is
p-prostable permissible for the given § in the sense of Def.(??) with
q = p for the §. Let § be the transform of § by = in the sense of
Def.(?77). Namely we write

(41.8) § ={660),n06),1<i<V+1}
The following is a consequence of the theorem Th.(34.1) of T-T Moh.

Theorem 41.15. Then according to the notations of Def.(35.1) for
Def.(??) and Def.(??) for Eq.(41.8), we have

(41.9) resorde(§) = resorde(G) = orde(g)
= mini<i<p1{ orde(g(i)) }
and
(41.10) resordg (§') = resordg (G') = orde (g')

= minlgigy’-H{ O’I“dg/(g/(i)) }

Moreover we have either one of the following three case:.
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(1) (The metastable case.) This is the case of resorde(F) + 1 =
resordg (§') which means resords(G) + 1 = resordg(G'). By
Moh’s Theorem (34.1) we know that resorde (G') is less or equal
to resorde(G) + 1.

(2) (The stable case.) This is the case of resorde(§) = resordg (F').
(3) (The improved case.) This is the case of resorde(§) > resordg (F').
In this case we prefer to examine the case in the following two

subcases separately.
(a) The case of resorde(F) — 1 = resordg (§').
(b) The case of resorde(§) — 1 > resordg ().

Theorem 41.16. In every case there always happens something favor-
able for not worsening the given singularities if not clear betterments.

(1) In the first case, G will have a non-empty system of 0-key pa-
rameters for G' and the unit p-cofactor. Moreover its residual
factor has the order Z 0 mod q. Therefore any sequence of
fitted permissible blowup for G' creates no metastable points
having residual orders > resordg(G'). Refer to Cor.(25.5) of
Th.(23.4).

(2) In the second case, we have an inductive strateqy in terms of
the edge invariants of G which make it tmpossible to have the
same case with the same residual order repeated indefinite.

(8) The third case has two subcases as follows:

(a) The case of resorde(§) — l = resordg (§').
(b) The case of resorde(§) — 1 > resordg (§').

Remark 41.9. Let us recall the background in which we formulate our
inductive approach for reduction of singularities. Given an ideal ex-
ponent £ = (J,b) and a given closed point ¢ € Sing(F), we have
defined the graded algebra p(F) called the characteristic algebra of E
at & by virtue of Th.(8.1). We then set an inductive stategy based
upon what we called the edge-invariants defined by Th.(10.1) on p(F),
which is called Fdge Generators Theorem, Namely we have edge data
of p(FE) consisting of the edge parameters y = (y1,- -+ ,y,) and the edge
generators g = (g1, -+, gr). There each g; is writen in the form

g =y +e with ¢ =p*

in the manner of Def.(10.1) after Th.(10.1). The the edge-invariant
denoted by Inve(E) is defined to be

IHV§(E) = (nan_TaQIa”' 7QT)

which has the properties of monotone behavior with respect to permis-
sible blowups thanks to Th.(11.1) which was proven after a few lemmas
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(11.3)-(11.7). Incidentally the edge-invariants are compared in terms of
the lexicographical ordering of Def.(??7). We thus follow Inv-sequence
of Def.(?7) in accord with Rem.(?7). Such a sequence of successive
blowups will be chosen under the condition of /P-prostable permissi-
bility with respect to /P-prostable presentations and their /P-prostable
transforms in the sense of Def.(37.2).
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42. p-SEMISTABLE /9-SINGULARITY

Definition 42.1. We consider a /%-exponent G with ¢ = p® with e > 1.
We say that G is p-semistable, or semistable for short, at a closed point
¢ € Sing(G) if we can write it at £ in the follwing form:

G = (h| /9 with h = uaSv?(h")? + (hH)P
where

(1) v is a subsystem of a system of parameters z defining those
components of I" containing &.

(2) The exponent 7 is subject to 0 < v, < ¢ — 1 for every j.

(3) 6 is either 1 or zero. If it is one then we should let u = 1 while
if it is zero we should consider & nonexistent.

(4) If 6 = 1 then (z, &) is extendable to a regualar system of param-
eters v = (z,w) of Re. Indeed then & € w and it is I'-transversal
in the sense of Def.(14.1).

(5) If 6 = 0 then v # 0 mod p, i.e, we have 7; # 0 mod p for at
least one j. In all cases u must be a unit in Re.

Remark 42.1. Let us recall the background from which our semistable
exponent G of Def.(42.1) is brought up. We start with an ideal expo-
nent £ = (J,b) with orde(J) = b and follow the strategy described
in Rem.(41.9). We thus refer to its characteristic algebra p(F) of E
by Th.(8.1) and apply the Edge Generators Theorem of Th.(10.1) to
E. Thereby we obtain a system of parameters y = (y1,---,¥,) and a
system of edge equations g; = y' +¢; with ¢; = p®,1 < i < r. They are
arranged so as to have 0 < e; < --- < e,. We have orde(e;) > ¢; and
may assume that these ¢;, Vi, are cleaned by those g;,Vj, in the sense
of Def.(??) according to Prop.(??) under the assumption that (y, z) is
a subsystem of z = (z,w). In other words y C w. For this assumptin
we should refer to Th.(??). Moreover the members of y are treated
in a certain previlleged way different from the other members of z \ y
in resgards to their transformation by permissible blowups. For this
matter we should refer to lemmas Lems.(11.3)-(11.7). Namely given a
permissible blowup 7 : Z/ — Z with center D 3 £ and a closed point
¢ € Sing(E")Nn~1(£), we may always choose an exceptional parameter
3 and the transforms g’ of y at & as follows:

(42.1) 3€Ew=x\y and 5_1yj—y; = ;€ K)Vy

provided that the edge invariants stays the same, ie, Invg(E') =
Inve(E) where E' denotes te transform of £ by .

Remark 42.2. Now with this background we define G = (h|| /9) with
h = €; and ¢ = ¢;. We then apply Th.(??) to the combination of FE
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and H in such a way to have the end that G becomes semistable in the
sense of Def.(42.1).

Remark 42.3. It should be noted that Eq.(42.1) is a partitioning of h
into a non-p-power part and a p-power part. Our idea is that given an
equation

(42.2) g =y —h = g — @l (W) + (W)

with ordg(h) > ¢, we want to reduce the order of the ideal exponent
G = (9Oyz,q) down to < g by means of a finite sequence of blowups,
permissible both for GG as well as for the original ideal exponent E of
Rem.(42.1). We then make use of an inductive hypothesis of the type
of Def.(10.2) applied to £ N G}, where the ideal exponent G, is defined
as follows:

(42.3) Gy = (9, 0) with g, = y* — ht and g, = q/p
accompanied with
(42.4) 9= ()" = w0’ (1)

which will be called the p-prime-summand of g. We have the follwing
inclusion relation between ideal exponents in the sense of infinitely near
singularities.

(42.5) ENG, C Gy where Gy = (uabv?(h)?, q)

which implies that the inclusion of G4 does not change at all the prob-
lem of resolution of singularities of £'N Gy,

Remark 42.4. The inductive hypothesis is clearly applicable to £ NG,
because of ¢, < ¢. Its use is made in choosing a finite sequence of
proper sequence of blowups over Z which is permissible successively
for the transforms of the given E and makes a fitted permissible Inv-
sequence (edge invariants sequence) for ENG, in the sense of Def.(10.2).
This is subject to the conditions of Def.(??) based on Eq.(??), Eq.(??)
and Eq.(??). The consequence of the inductive hypothesis is that the
final transform of £ N G, has the empty singular locus.

Remark 42.5. Let us examine what changes upon E and G, will result
as a consequence of the application of the inductive hypothesis to ENG,
along the process of Def.(10.2) We will have either one of the following
three results will be achieved.

(1) the transform E will have empty singular locus.
(2) there results an HIT-sequence by which the transform of G,
will have empty singular locus.
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(3) The transform of the prime-summand of g will have metastic
jump phenomena and hence the transform of G will have a prime
summand of monogenic factor.

Remark 42.6. For this end we will make use of a “¢rick” which will be
called /9-genemarking

Definition 42.2. A general element xy € K* will be called a /9-
genemarker in its use of acting on an equation of the form Eq.(42.2)
and change it to

g=y"—h =y — ("a) (x(W)) + (1))
This does not affect the equation Eq.(42.3) while

From now on we assume that [6 = 1 and v = 1 in Def.(42.1) and
hence in Eq.(42.4).

Assume that ¢ = p®,e > 1. We start from the point where we are
given a p-monogenic semistable state of G = (h|| /9) in which h is of
the form wh!” + b which always becomes so whenever a mettastable
transformation takes place after semistable state.

In such situation, we always modify w and h*" as follows:
Write

= At to
where o is cleaned by hf, We replace w by w + .
Assume that

(1) and we have regular system of parameters x of Z at £ which is
compatible with the given NC-data ' in Z and w as one of its
components. Hence orde(w) = 1.

(2) We have PP (h) = p¢(h'Oy) so that

Der(G) = (th(’)Z | q) at &

(3) We have a single d € Derz¢ such that Oh = ht* € p(R¢).
We obtain another idealistic exponent H = (0h,q — 1) such that

(42.6) S(H) > 6(G)

which means that

The resolution problem on G is equivalent to that of HN
G. Namely it is enough to solve the resolution problem
on G under the condition with the same on H.

There our procedure is as follows:
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(1) (Step 1)
We resolve the sigularities of H unless during the process the
reduction of singularities of E happens in the sense of the edge
invariants. In the end we reach the point of the semistable case
in which A’ is T-monomial at £, say 2%, so that h = wz?? + ht".
(2) Then we apply the resolution to the ideal (27, h*). The end
result has two cases:
(a) 2? divides ht after the transformation.
(b) A divides 27 so that At is also I-monomial.
the first case is when we replace w by w + (27?h*). In the
second case, after any additinal transformations, “spin-offs” of
the first stable term wzP? will be added only as multiples of the
monomial h*.

43. INDUCTIVE REDUCTION ON e OF q = p°

The resolution problem on the ideal exponent H is reduced to that
of FF = (0h,q). To be precise, Eq.(42.6) implies

(43.1) S(F) > &(G)

because as for any ¢-th power quantity its divisibility by a (¢ — 1)-th
power y?-1 of an exceptional parameter t implies the divisibility by the
g-the power n? at every point of every step of any permissible sequence
of blowups.

Next let us define the /¢M-exponent G' = (At || /21)) which is clearly
equivalent to the /%-exponent (h#?|| /7). Therefore Eq.(43.1) implies

(43.2) S(F)NG(G) = 6(F)NG(9)

Now we can appeal to the induction hypothesis on such exponents
as &(G) of edge invariants with q(1) = p~lq¢=p* ! < q.

Note :

(1) Have e = 1 is done, then induction assumption for e—1, then work

A° = z(1)PPM) where a(1) = pB(1) + (1) This A° is a child of A and
replaced each time by a bigger one. B and A° have disjoint cofactors
(after common factor taken) repeatedly apply ambient reduction for
members of I'.

(2) Let £ > 0 be the biggest integer such that uy # 0. Then the
dubbed /%-reduction will take care of the last g-factor z(k)P5®*).

with triplet of [-monomials: A = uyz(1)*Mwf B=3,_,_, (uiz(i)a(i)wf’

),,(i—l)
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Theorem 43.1. Let g, v and G be the same as in Th.(43.1). Assume
that we have nonempty key q-parameters ( of G at a closed point & €
Sing(G), i.e, the same of g with respect tovY at§. Letw : Z' — Z with
center D and let G' be the same as in Th.(??). Pick any £ € n=1(¢)
and an exceptional parameter v € M at &'. If we have

(43.3) d = orde(g) = resords(G) < resordg(G)
then we have

(1) & is not metastable for m and resordg(G') = d

(2) v 1¢; € Re for all j (€ Mg for all j when Ji with vy~ v; € Mg,
Th.(?? ).)

(3) v71C are key q-parameters for G' at €.

Next let us consider G = (2% v f| /9) and a regular system of pa-
rameters = (v, w,w) at £ in the sense of Eq.(??7). We then have
the g-cofactor cotangent module Ly maz(G)°7* = Ly maz(v?) and the
cotangent p-flag {L(f,a),p*,1 < a < [} associated with the residual
f € M. (Refer to Th.(47.2).)

Theorem 43.2. Let us have G and v = (v,w,w) as above. Let ( be
key g-parameters of G at . Let w : Z' — Z be a fitted permissible
blowup for G and let £ be a closed point of m=1(&) N Sing(G') where G’
denotes the transform of G by «.
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44. e-REDUCTION FOR ¢ = p°

In this section we assume that the base field K is a finite field of
characteristic p > 0 and the ambient scheme Z is smooth of finite type
over K. Let £ € Z be a closed point and take the local ring R = Rz
at the point ¢ € Z. For simplicity sake we assume that ¢ is K-rational
throughout this section. If not we can always replace K by its suitable
finite extension K’ so as to make £ to be K-rational. When we

Our primary object of study in this section is an equation of the
following form:

Yl + Z di ()12 Oy ()70
(7))

where
(1) With z = (v(i),w(2)) for each i, x = (y, z,t) is a regular system
of parameters of R where z is a system of variables defining
those members of the NC-data I' in Z.
(2) Each (i) is a system of integers none of whose components is
divisible by ¢.
(3) ¢i(z) € Re for every i.

45. /P-REDUCTION

Immediately after a metastable jump, keep applying fitted permissi-
ble blowups until next drop of the residual order from d + 1 to d. At
the step just before this last blowup, let us use notational simplicity
and say that our /P-exponent is written as

G = (ZF|/7)
at our chosen closed point denoted by £ € Sing(G)) C Z. As before
we have
resorde(G) = orde(f) =d+1

and let us take a system of p-cotangent parameters of f at & denoted
by 0. We may then assume that ing(v,) is a smallest system in terms of
which ing(f) is expressible as a homogeneous polynomial of degree d+1
in K[ing(0)]. In order to investigate how the subsequent blowups affect
the transforms of G we consider the following three cases separately.

(1) d+1= mod p

item d = mod p
(2) none of the above two.
The system ©(1) contains at least one metastable parameter from

the preceding metastable transform and possibly others of the NC-
data. Let 0(1) be a shortest system which augments to ©(1) so as to
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have the augmented system contains all the metastable parameters.
Then we continue to perform fitted permissible blowups until the next
metastable jump takes place. Just before this second jump, express the
then /P-exponent G as being (zP%v7 f|| /P) at € and then decompose
the residual factor f = f; + f, in the following manner.

(1) the transform of v(1) is extended to © by adding exactly (min-
imal) those out of the transform of (1) which are needed to
contain the new cotangent module subject to be contained in
the transform of ©(1)Nv(1) (and no new variables from outside.

(2) fo € Y pcen(y) P(Fe)0* where ¥ denotes the appropriate trans-
form of ©(1) (of the same length) and

(3) f; has no monomial terms belonging to >° ¢ () p(Fe) 0.

Then examine the nature of the next metastable jump.
Divide the cases as:

(1)d+1= mod p

(2) d= mod p

(3) none of the above two.

46. PRIMARY STABILITY CONDITIONS

Let G = (27°07 f]|/?) with g-cofactor v” and with a residual factor f
in the sense of Def.(19.1) and Def.(19.3) at a closed point £ € Sing(G).
We let resorde(G) = orde(f) = d. We have a regular system of param-
eters = (z,w) of Re with z = (v, w) in the manner of Eq.(?7).

Remark 46.1. Assume that we are given a member
Let us then define

(46.1) G = (2Ll /)Y for i = 1,2

having the same ¢-factor and g-cofactor as G.

(1) orde(f1) = orde(Cf2) = orde(f) = resords(G) = d

(2) f1is a residual factor of G;

(3) ¢ is a member of a regular system of parameters x of R¢ and
ing(¢) is not in the expression of ing(f1) in keling(z)].

Take any fitted permissible blowup 7 : Z/ — Z with center D for
both G;,7 = 1,2, and pick any closed point
¢ e t€) n () Sing(G)
i=1,2
where G/ denotes the transform of G; by 7 for each 7.

Theorem 46.1. Under the conditions of Rem.(46.1) let us assume
(46.2) ing(fr) & p°(gre(Re)) where q = p°.
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Then for any m of Rem.(46.1) there cannot exist any & which is metastable
of G provided that any one of the following conditions is satisfied:

(1) ¢ & Lg—max(G)T".

(2) M(Gy) = 0.

(3) 0y c(C f2) # 0.

(4) ing(Cfa) & reling(x\ €), ine(C)7]

Theorem 46.2. If the primary m-scheme of G at a closed point & €
Sing(G) then there exists no metastable points appears unless once the
restdual order drops.

47. PRIME ¢-SUMMANDS

Definition 47.1. With respect to a regular system of parameters = of
Re¢, we consider subsystems 1" = (11,--- ,Tp) and U of x and define a
prime T'/g-element of R, which means an element of

(47.1) o (Re) o (T)

where o(T) is a Z(p)-linear combination of those monomials {7 | a €

¢’(q)}.

(1) When we have an addition of a new factor of the form U° with
another subsystem U of z which have no common components
with T so that Eq.(47.1) becomes

pf(Re) o (T)U°

we factor U? as U%U" where 0 < v; < ¢,Vj, and add U?® to
p°(Re) and add U7 to o(T"). We thus change it into the form of
Eq.(47.1) again.

(2) When we have a translation of the form T; — T; + ¢;Tp,1 <
i <60—1, with ¢; € K and eliminate ¢-th powers from Eq.(47.1)
the result is again of the form Eq.(47.1).

Lemma 47.1. Assume that 7w : Z' — Z is fitted permissible for G
and that £ is a closed point of 7=*(£) N Sing(G'), where G’ denotes the
transform of G by w. If resorde(G') = resords(G) so that &' is not
metastable of G for w, at least one of the following is true:

(1) & is a metastable singular point of G(d) for m, while we have
orde (v f%) = d.

(2) ordeg (v f*) > d and no element of Resi¢ (G) can be the initial
of any exceptional parameter for © at &'. In this case &' is not
metastable of G(d)' for .

Again going back to the general case of Eq.(21.1) and Eq.(21.2).
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Definition 47.2. Given any element g € R, the largest member
L(g,1) of Eq.(21.1) will be called the cotangent module of g or same
of the ideal gRe. In dealing with the /%-exponent G = (2%°v7 f || /) of
Eq.(?7?), we have two important special applications of the notion of
cotangent module. Namely one is the case when ¢ is a nonzero element
of R¢ such as the residual factor f of G, and the other when g is a
monomial of some chosen parameters in R, such as the g-cofactor v”
of G in the sense of Def.(19.1). Let us consider the case in which g is a
monomial 24 of a regular system of parameters x of Re. We then write
4 = 298¢ with a subsystem v of z in such a way that 0 < C; < ¢ for
all 4, when v is called the g-cofactor of x# in accord with Def.(19.1).

Assuming that C' # 0 we have the cotangent module of v¢ which is:

L(zC,1) = L(z¢,1) = Z ke ing (v;)

In the case of monomial 24 as above, the cotangent module of z€ is
will be called as q-cofactor cotangent module of x* and moreover it will
be given a special symbol L(z¢,1). Having ¢ in mind, we will write
L(a?, 1) meaning L(x®, 1),

The notion and symbol will be extended to any /%-exponent G =
(29907 f || /%) satisfying the conditions of Eq.(??). Namely the cotan-
gent module of the monomial v” will be called the ¢-cofactor cotangent
module of G and it will be denoted by L(G, ). Thus

L(G, 1) = L(v", ) = L(v", 1) = L(", 1) = Y _ ke ing(v;)

1<i<t

with the g-cofactor v7 of G.

Note that the number e of ¢ = p® will play an important role in the
following theorem.

Theorem 47.2. Let {L(a) = L(f,a),p*,1 < a <I,} be the cotangent
p-flag of Eq.(21.2) associated with the chosen residual factor f of G
according to Eq.(?7). Let L(f) = L(G,1) be the p-cofacter cotangent
module of G which is the cotangent p-module associated with the mono-
mial factor v7 in the sense of Def.(47.2). If there exists an integer
a,1 <a <1, such that 1 < e, < e and L(a) ¢ L(t) then there ezist no
points in w1 (&) which are metastable for the transform G’ of G by any
fitted permissible blowup .

Note that the nonzero condition of L(g,a)/(L(g,a) N L(v?, 1)) for
some a with e, < e plays the key role to the conclusion of the theorem.
Refer to the notion of key g-parameters of Def.(77).



SINGULARITIES 135



136 H. HIRONAKA

48. NC-DUBBED /?-STRATEGY

A T-pure blow-up over Z will mean a blow-up whose center is an
intersection of some of the members of I'. An ideal exponent F' = (1, ¢)
is called I'-pure if the ideal [ is generated by a I'-monomial at every
point of Sing(F).

Definition 48.1. A T'-dubbed /%-exponent, say § = (F;G), is by defi-
nition a pair of I'-pure F' and a /%-exponent G = (g, /%).

Let us write I' = {I';, 1 <7 < t}.

Definition 48.2. Given a I'-dubbed § = (F;G) we define that a bow-
up 7 : Z' — Z with center D C Z is permissible for § if the following
conditions are satisfied

(1) m is I'-pure, i.e., there exists a subset d of [1,s] such that
D = Njeal';, # 0, which will be denoted by D(d), and
(2) m is permissible for both F' and G.

Definition 48.3. Let 7 : 2/ — Z, D C Z, be permissible for §. Then
we define the transform §' = (E’,G’) of § by 7 to be the one having

(1) the transform F”’ of F' by 7 as ideal exponents, and
(2) the transform G’ of G by 7 in the sense of /I-systems.

Definition 48.4. The singular locus is defined by
Sing(F) = Sing(F) N Sing(G)
where Sing(G) ={n € Z | ord,(g,/?) > q}.

Remark 48.1. All in this section and the next are applicable to the
case G = (0] /7 ) in which case all the arguments becomes much
simpler. However, what is important in the simple case is the algorithm
of resolution of singularities of ['-monomial ideal exponent. This was
used already in my old resolution paper 1964.

49. COMMENTS ON GLOBALIZATION

Immediately after a metastable jump has occurred at a closed point
¢ € 7 1(&) N Sing(G'), the ambient reduction to any center D' C Z’
contained in {v; =T, = 0,V } is idealistic because we have f' € (v; =
T; =0,Yj)Re.

The global resolution first of all requires a precise formulation of
global induction which is not presented in this note. However this is
much easier than the “local” work, which we explained how to carry
out through in our program. In the positive characteristic case, the
essential new difficulty is all “local”. But this term “local” means
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“open-local” in Zariski topology which is far stronger than “wedge-local
(or micro-local)” which is meant in the so called “local” uniformization
theorem. The “Zariski-open-local” processing was indeed the essence
of our program we developed here.
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