AN INTRODUCTION TO DISTRIBUTIONS AND CURRENTS

VI Escuela Doctoral PUCP-UVa

7-17 May 2013

M. G. Soares - UFMG

M. G. Soares - UFMG AN INTRODUCTION TO DISTRIBUTIONS AND CURRENTS

• A complex manifold (C^k, C^∞, C^ω = real analytic) of dimension n is a topological space M, which is Hausdorff, connected and with a countable basis, endowed with an analytic structure defined as follows: there exists an open covering $\{U_{\alpha}\}_{\alpha \in A}$ of M and homeomorphisms $\varphi_{\alpha}: U_{\alpha} \longrightarrow V_{\alpha}$ where $V_{\alpha} \subset \mathbb{C}^n$ $(V_{\alpha} \subset \mathbb{R}^n)$ is open, such that the transition maps $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ are holomorphic $(C^k, C^{\infty}, C^{\omega})$ where defined. φ_{α} is called a *chart* and, for $z \in M$, $\varphi_{\alpha}(z) = (z_1^{\alpha}, \ldots, z_n^{\alpha}) \in \mathbb{C}^n$ are called the *local coordinates* in U_{α} . The collection $\{U_{\alpha}, \varphi_{\alpha}\}$ is called a holomorphic (C^k , C^∞ , C^ω) atlas for M.

MANIFOLDS

If M has dimension n, a connected subset N ⊂ M is a submanifold of dimension m ≤ n if, for each z ∈ N there exists a chart {U_α, φ_α}, with z ∈ U_α, such that φ_α is a homeomorphism between U_α ∩ N and an open set of C^m × {0} ⊂ C^m × C^{n-m} ≅ Cⁿ.

- If M has dimension n, a connected subset N ⊂ M is a submanifold of dimension m ≤ n if, for each z ∈ N there exists a chart {U_α, φ_α}, with z ∈ U_α, such that φ_α is a homeomorphism between U_α ∩ N and an open set of C^m × {0} ⊂ C^m × C^{n-m} ≅ Cⁿ.
- Given manifolds *M* and *N*, a map *f* : *M* → *N* is holomorphic (*C^k*, *C*[∞], *C^ω*) provided the compositions ψ_β ∘ *f* ∘ φ_α⁻¹ are holomorphic (*C^k*, *C[∞]*, *C^ω*) where defined, with ψ_β and φ_α charts in *N* and *M* respectively.

- If M has dimension n, a connected subset N ⊂ M is a submanifold of dimension m ≤ n if, for each z ∈ N there exists a chart {U_α, φ_α}, with z ∈ U_α, such that φ_α is a homeomorphism between U_α ∩ N and an open set of C^m × {0} ⊂ C^m × C^{n-m} ≅ Cⁿ.
- Given manifolds *M* and *N*, a map *f* : *M* → *N* is holomorphic (*C^k*, *C*[∞], *C^ω*) provided the compositions ψ_β ∘ *f* ∘ φ_α⁻¹ are holomorphic (*C^k*, *C[∞]*, *C^ω*) where defined, with ψ_β and φ_α charts in *N* and *M* respectively.
- X ⊂ M is an analytic set if, for each z ∈ M there is an open neighborhood U ⊂ M of z and a holomorphic map f : U → C^ℓ such that X ∩ U = f⁻¹(0) (ℓ may depend on z).

MANIFOLDS

 If W ⊂ M is open and ℓ ∈ Z_{≥0} ∪ {∞, ω} then C^ℓ(W, C) (C^ℓ(W, R)) is the space of functions of class C^ℓ on W. In case W is not open, it is the space of functions which admit a C^ℓ extension to a neighborhood of W.

MANIFOLDS

- If W ⊂ M is open and ℓ ∈ Z_{≥0} ∪ {∞, ω} then C^ℓ(W, C) (C^ℓ(W, R)) is the space of functions of class C^ℓ on W. In case W is not open, it is the space of functions which admit a C^ℓ extension to a neighborhood of W.
- Tangent space. Given $z \in M$, write

$$\varphi_{\alpha}(z) = (z_{1}^{\alpha}, \dots, z_{n}^{\alpha}) =$$

= $(x_{1}^{\alpha} + iy_{1}^{\alpha}, \dots, x_{n}^{\alpha} + iy_{n}^{\alpha}) =$
 $(x_{1}^{\alpha}, y_{1}^{\alpha}, \dots, x_{n}^{\alpha}, y_{n}^{\alpha}).$

Note that *M* is naturally a real analytic manifold of dimension 2*n*.

MANIFOLDS

The real tangent space of M at z, T_zM is, by definition, the space of differential operators ν : C¹(U, ℝ) → ℝ, where z ∈ U ⊂ M is open satisfying (ν is called a tangent vector): (i) ν is ℝ-linear and (ii) ν(fg) = g(z)ν(f) + f(z)ν(g).

MANIFOLDS

The real tangent space of M at z, T_zM is, by definition, the space of differential operators ν : C¹(U, ℝ) → ℝ, where z ∈ U ⊂ M is open satisfying (ν is called a tangent vector): (i) ν is ℝ-linear and (ii) ν(fg) = g(z)ν(f) + f(z)ν(g).
By definition, ∂f/∂x_i^α(z) = ∂(f ∘ φ_α)/∂x_i^α(φ_α(z)) and similarly for the y_i^αs.

MANIFOLDS

• The real tangent space of M at z, T_zM is, by definition, the space of differential operators $\nu : C^1(U, \mathbb{R}) \to \mathbb{R}$, where $z \in U \subset M$ is open satisfying (ν is called a tangent vector): (i) ν is \mathbb{R} -linear and (ii) $\nu(fg) = g(z)\nu(f) + f(z)\nu(g)$. • By definition, $\frac{\partial f}{\partial \mathbf{x}^{\alpha}}(z) = \frac{\partial (f \circ \varphi_{\alpha})}{\partial \mathbf{x}^{\alpha}}(\varphi_{\alpha}(z))$ and similarly for the y_i^{α} s. • Hence, $\frac{\partial}{\partial x^{\alpha}}(z)$ is a tangent vector at z and $\left\{\frac{\partial}{\partial \mathbf{x}^{\alpha}}(z), \frac{\partial}{\partial \mathbf{y}^{\alpha}}(z), \dots, \frac{\partial}{\partial \mathbf{x}^{\alpha}}(z), \frac{\partial}{\partial \mathbf{y}^{\alpha}}(z)\right\}$

is a real basis of $T_z M$ (exercise).

MANIFOLDS

Complexify T_zM, that is, T_zM^C = T_zM ⊗ C (= simply allow multiplication by complex numbers). This is a C-vector space with dim_C T_zM^C = 2n. For z ∈ U_α, choose for T_zM^C the basis

$$\left\{ \frac{\partial}{\partial z_1^{\alpha}}(z), \frac{\partial}{\partial \bar{z}_1^{\alpha}}(z), \dots, \frac{\partial}{\partial z_n^{\alpha}}(z), \frac{\partial}{\partial \bar{z}_n^{\alpha}}(z) \right\}$$

where $\frac{\partial}{\partial z_k^{\alpha}}(z) = \frac{1}{2} \left(\frac{\partial}{\partial x_k^{\alpha}}(z) - i \frac{\partial}{\partial y_k^{\alpha}}(z) \right)$ and
 $\frac{\partial}{\partial \bar{z}_k^{\alpha}}(z) = \frac{1}{2} \left(\frac{\partial}{\partial x_k^{\alpha}}(z) + i \frac{\partial}{\partial y_k^{\alpha}}(z) \right)$

MANIFOLDS

MANIFOLDS

$$D\widetilde{\Theta}_{\alpha\beta} = \begin{pmatrix} \frac{\partial(u_1, v_1)}{\partial(x_1, y_1)} & \cdots & \frac{\partial(u_n, v_n)}{\partial(x_n, y_n)} \\ \vdots & \ddots & \vdots \\ \frac{\partial(u_n, v_n)}{\partial(x_1, y_1)} & \cdots & \frac{\partial(u_n, v_n)}{\partial(x_n, y_n)} \end{pmatrix}$$

• Now write
$$\widetilde{\Theta}_{\alpha\beta} = (\widetilde{\Theta}_1, \dots, \widetilde{\Theta}_n)$$
 where $\widetilde{\Theta}_j = u_j + iv_j$.

M. G. Soares - UFMG AN INTRODUCTION TO DISTRIBUTIONS AND CURRENTS

э

э

MANIFOLDS

- Now write $\widetilde{\Theta}_{\alpha\beta} = (\widetilde{\Theta}_1, \dots, \widetilde{\Theta}_n)$ where $\widetilde{\Theta}_j = u_j + iv_j$.
- Changing from the basis

$$\left\{\frac{\partial}{\partial x_1}(z),\frac{\partial}{\partial y_1}(z),\ldots,\frac{\partial}{\partial x_n}(z),\frac{\partial}{\partial y_n}(z)\right\}$$

to the basis

$$\left\{\frac{\partial}{\partial z_1}(z), \frac{\partial}{\partial \bar{z}_1}(z), \dots, \frac{\partial}{\partial z_n}(z), \frac{\partial}{\partial \bar{z}_n}(z)\right\}$$

and finally changing from the basis

$$\left\{\frac{\partial}{\partial z_1}(z), \frac{\partial}{\partial \overline{z}_1}(z), \dots, \frac{\partial}{\partial z_n}(z), \frac{\partial}{\partial \overline{z}_n}(z)\right\}$$

to the basis

$$\left\{\frac{\partial}{\partial z_1}(z),\ldots,\frac{\partial}{\partial z_n}(z),\frac{\partial}{\partial \bar{z}_1}(z),\ldots,\frac{\partial}{\partial \bar{z}_n}(z)\right\}$$

• the derivative $D\widetilde{\Theta}_{\alpha\beta}$ has the matrix

$$D\widetilde{\Theta}_{lphaeta}=\left(egin{array}{cc} \Theta_{lphaeta} & 0 \ 0 & ar{\Theta}_{lphaeta} \end{array}
ight)$$

where

$$\Theta_{\alpha\beta} = \left(\frac{\partial \widetilde{\Theta}_i}{\partial z_j}\right)_{1 \le i,j \le n}$$

• the derivative $D\widetilde{\Theta}_{\alpha\beta}$ has the matrix

$$D\widetilde{\Theta}_{lphaeta}=\left(egin{array}{cc} \Theta_{lphaeta}&0\0&ar{\Theta}_{lphaeta}\end{array}
ight)$$

where

$$\Theta_{\alpha\beta} = \left(\frac{\partial \widetilde{\Theta}_i}{\partial z_j}\right)_{1 \le i,j \le n}$$

Hence, det DΘ_{αβ} = det Θ_{αβ} det Θ_{αβ} = | det Θ_{αβ}|² > 0 and complex manifolds are born orientable.

► We use this last basis to decompose T_zM^C into 2 subspaces.

► We use this last basis to decompose T_zM^C into 2 subspaces.

$$T'_{z}M = \left\langle \frac{\partial}{\partial z_{1}}(z), \dots \frac{\partial}{\partial z_{n}}(z) \right\rangle_{\mathbb{C}}$$

the holomorphic tangent space and

►

► We use this last basis to decompose T_zM^C into 2 subspaces.

$$T'_{z}M = \left\langle \frac{\partial}{\partial z_{1}}(z), \dots \frac{\partial}{\partial z_{n}}(z) \right\rangle_{\mathbb{C}}$$

the holomorphic tangent space and

$$T_z''M = \left\langle \frac{\partial}{\partial \bar{z}_1}(z), \ldots, \frac{\partial}{\partial \bar{z}_n}(z) \right\rangle_{\mathbb{C}}$$

the anti-holomorphic tangent space.

►

► We use this last basis to decompose T_zM^C into 2 subspaces.

$$T'_{z}M = \left\langle \frac{\partial}{\partial z_{1}}(z), \dots \frac{\partial}{\partial z_{n}}(z) \right\rangle_{\mathbb{C}}$$

the holomorphic tangent space and

$$T_z''M = \left\langle \frac{\partial}{\partial \bar{z}_1}(z), \ldots, \frac{\partial}{\partial \bar{z}_n}(z) \right\rangle_{\mathbb{C}}$$

the anti-holomorphic tangent space.

• So
$$T_z M^{\mathbb{C}} = T'_z M \oplus T''_z M$$
.

Let's restrict now to real manifolds (just to avoid heavy notation). So suppose M is a real manifold of dimension m and class C^k.

- Let's restrict now to real manifolds (just to avoid heavy notation). So suppose M is a real manifold of dimension m and class C^k.
- A tangent vector ν at $a \in M$ acts on functions and $df_a.\nu = \nu(f) = \sum_{1}^{m} \nu_j \partial f / \partial x_j(a).$

- Let's restrict now to real manifolds (just to avoid heavy notation). So suppose M is a real manifold of dimension m and class C^k.
- A tangent vector ν at $a \in M$ acts on functions and $df_a.\nu = \nu(f) = \sum_{1}^{m} \nu_j \partial f / \partial x_j(a).$
- Since dx_j. ν = ν_j we have df = ∑₁^m(∂f/∂x_j)dx_j. This means that the dual basis of {∂f/∂x₁,...,∂f/∂x_m} is {dx₁,...,dx_m}. The dual space T^{*}_xM of T_xM is called the cotangent space.

- Let's restrict now to real manifolds (just to avoid heavy notation). So suppose M is a real manifold of dimension m and class C^k.
- A tangent vector ν at $a \in M$ acts on functions and $df_a.\nu = \nu(f) = \sum_{1}^{m} \nu_j \partial f / \partial x_j(a).$
- Since dx_j. ν = ν_j we have df = ∑₁^m(∂f/∂x_j)dx_j. This means that the dual basis of {∂f/∂x₁,...,∂f/∂x_m} is {dx₁,..., dx_m}. The dual space T_x^{*}M of T_xM is called the cotangent space.
- The disjoint unions TM = ∪_{x∈M} T_xM and T*M = ∪_{x∈M} T^{*}_xM are the tangent and cotangent bundles of M.

MANIFOLDS

Consider the real algebra Λ* generated by dx₁,..., dx_n with the relations dx_i ∧ dx_i = 0 and dx_i ∧ dx_j = −dx_j ∧ dx_i for i ≠ j. As a vector space this algebra has basis:

 $1, dx_i, dx_i \wedge dx_j (i < j), dx_i \wedge dx_j \wedge dx_k (i < j < k), ...$

MANIFOLDS

Consider the real algebra Λ* generated by dx₁,..., dx_n with the relations dx_i ∧ dx_i = 0 and dx_i ∧ dx_j = −dx_j ∧ dx_i for i ≠ j. As a vector space this algebra has basis:

 $1, dx_i, dx_i \wedge dx_j (i < j), dx_i \wedge dx_j \wedge dx_k (i < j < k), \dots$

• Differential forms of class C^k on \mathbb{R}^n are elements of

 $C^{k}(\mathbb{R}^{n},\mathbb{R})\otimes_{\mathbb{R}}\Lambda^{*}.$

MANIFOLDS

Consider the real algebra Λ* generated by dx₁,..., dx_n with the relations dx_i ∧ dx_i = 0 and dx_i ∧ dx_j = −dx_j ∧ dx_i for i ≠ j. As a vector space this algebra has basis:

 $1, dx_i, dx_i \wedge dx_j (i < j), dx_i \wedge dx_j \wedge dx_k (i < j < k), ...$

• Differential forms of class C^k on \mathbb{R}^n are elements of

$$C^{k}(\mathbb{R}^{n},\mathbb{R})\otimes_{\mathbb{R}}\Lambda^{*}.$$

The same applies locally to manifolds.

MANIFOLDS

Hence, a differential form of degree q, or a q-form on M, is a map u on M with values u(x) ∈ Λ^q T^{*}_xM. In an open coordinate patch U ⊂ M, u(x) can be written

$$u(x) = \sum_{|I|=q} u_{|I|}(x) dx_{|I|}$$

where $I = (i_1, \ldots, i_q)$ is a multi-index, $i_1 < \cdots < i_q$ and $dx_{|I|} = dx_{i_1} \land \cdots \land dx_{i_q}$.

MANIFOLDS

Hence, a differential form of degree q, or a q-form on M, is a map u on M with values u(x) ∈ Λ^q T^{*}_xM. In an open coordinate patch U ⊂ M, u(x) can be written

$$u(x) = \sum_{|I|=q} u_{|I|}(x) dx_{|I|}$$

where $I = (i_1, \ldots, i_q)$ is a multi-index, $i_1 < \cdots < i_q$ and $dx_{|I|} = dx_{i_1} \land \cdots \land dx_{i_q}$.

For all 0 ≤ q ≤ m, 0 ≤ k ≤ ∞, A^q_k(M) denotes the space of C^k q-forms on M, i.e., forms with u_{|I|} functions of class C^k.

The exterior derivative is the operator

$$d: A_k^q(M) \longrightarrow A_{k-1}^{q+1}(M)$$

defined locally by

$$du = \sum du_{|I|} \wedge dx_{|I|}$$

The exterior derivative is the operator

$$d: A_k^q(M) \longrightarrow A_{k-1}^{q+1}(M)$$

defined locally by

$$du = \sum du_{|I|} \wedge dx_{|I|}$$

• It satisfies $d(u \wedge v) = du \wedge v + (-1)^{\deg u} u \wedge dv$ and $d^2 = 0$.

The exterior derivative is the operator

$$d: A_k^q(M) \longrightarrow A_{k-1}^{q+1}(M)$$

defined locally by

$$du = \sum du_{|I|} \wedge dx_{|I|}$$

- It satisfies $d(u \wedge v) = du \wedge v + (-1)^{\deg u} u \wedge dv$ and $d^2 = 0$.
- A form u is closed if du = 0 and exact if u = dv for some form v.

MANIFOLDS

Finally, a cohomological complex K[●] = ⊕_{q∈Z} K^q is a collection of modules over a ring, endowed with differentials, that is, linear maps d^q : K^q → K^{q+1} satisfying d^{q+1} ∘ d^q = 0.

- Finally, a cohomological complex K[●] = ⊕_{q∈Z} K^q is a collection of modules over a ring, endowed with differentials, that is, linear maps d^q : K^q → K^{q+1} satisfying d^{q+1} ∘ d^q = 0.
- The associated cocycle, coboundary and cohomology modules are defined respectively by

$$Z^{q}(K^{\bullet}) = \ker d^{q}, \qquad Z^{q}(K^{\bullet}) \subset K^{q}$$

$$B^{q}(K^{\bullet}) = \operatorname{Im} d^{q-1}, \qquad B^{q}(K^{\bullet}) \subset Z^{q}(K^{\bullet}) \subset K^{q}$$

$$H^{q}(K^{\bullet}) = Z^{q}(K^{\bullet})/B^{q}(K^{\bullet})$$
MANIFOLDS

If M is a real C[∞] manifold, the De Rham complex of M is the cohomological complex

$$A^ullet_\infty(M)=igoplus_{q\geq 0}A^q_\infty(M)$$

with differential d, the exterior derivative.

MANIFOLDS

► If *M* is a real C[∞] manifold, the De Rham complex of *M* is the cohomological complex

$$A^ullet_\infty(M)=igoplus_{q\geq 0}A^q_\infty(M)$$

with differential d, the exterior derivative.

• We denote its cohomology groups by $H^q_{DR}(M,\mathbb{R}) = Z^q(M,\mathbb{R})/B^q(M,\mathbb{R}).$

MANIFOLDS

A real manifold *M* is orientable in case it admits an atlas with all transition maps φ_α ∘ φ_β⁻¹ with positive jacobian determinant. Suppose *M* is oriented by such an atlas. If u(x) = g(x₁,...,x_n) dx₁ ∧ ··· ∧ dx_m is a continuous *m*-form on *M*, with m = dim_ℝ M, with compact support in a coordinate system, define ∫_M u = ∫_{ℝ^m} f dx₁... dx_m. This is independent of the coordinate system (orientability). If u has compact support, we extend this definition of ∫_M u by means of a partition of unity.

٠

MANIFOLDS

Now, if K ⊂ M is a compact set with piecewise C¹ boundary ∂K, it's possible to give an orientation to ∂K in such a way that for any differential form of class C¹ and of degree m − 1 we have

$$\int_{\partial K} u = \int_{K} du.$$

This is Stokes formula.

CURRENTS

A C[∞] p-form ω on U ⊂ Cⁿ is given by a sum of terms of the types f₁dx₁, g_Jdy_J and h_Kd(x, y)_K, where dx₁ = dx_{i1} ∧ dx_{i2} ∧ ··· ∧ dx_{ip}, dy_J = dy_{j1} ∧ dy_{j2} ∧ ··· ∧ dy_{jp}, d(x, y)_K is a product of p-forms of types dx_i and dy_j, and f₁, g_J, h_K are smooth complex valued functions. Now, dx_i = (1/2)(dz_i + dz̄_i) and dy_i = (1/2i)(dz_i - dz̄_i). Expressing the terms in ω by using dz_i and dz̄_i we arrive at

$$\omega = \sum k_{i_1,\ldots,i_r,j_1,\ldots,j_s} dz_{i_1} \wedge \cdots \wedge dz_{i_r} \wedge d\overline{z}_{j_1} \wedge \cdots \wedge d\overline{z}_{j_s},$$

which we abbreviate as $\omega = \sum k_{I,J} dz_I \wedge d\overline{z}_J$. We say that each term of this sum is a p-form of type (r, s), r + s = p.

CURRENTS

 \blacktriangleright It follows that a p-form ω has a unique expression as a sum

$$\omega = \omega^{(p,0)} + \omega^{(p-1,1)} + \dots + \omega^{(0,p)},$$

where $\omega^{(r,s)}$ is of type (r, s).

 \blacktriangleright It follows that a p-form ω has a unique expression as a sum

$$\omega = \omega^{(p,0)} + \omega^{(p-1,1)} + \dots + \omega^{(0,p)},$$

where $\omega^{(r,s)}$ is of type (r, s).

Let A⁰(U) be the C-algebra C[∞](U, C) and A^p(U) the A⁰(U)-module of C[∞] complex p-forms on U. The decomposition above induces a decomposition

$$A^{p}(U) = A^{(p,0)}(U) \oplus A^{(p-1,1)}(U) \oplus \cdots \oplus A^{(0,p)}(U).$$

We have the exterior differential $d : A^p(U) \to A^{p+1}(U)$.

For
$$f \in A^0(U)$$

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial z_i} dz_i + \sum_{i=1}^{n} \frac{\partial f}{\partial \overline{z}_i} d\overline{z}_i.$$

Define, on the level of functions,

$$\partial f = \sum_{i=1}^{n} \frac{\partial f}{\partial z_i} dz_i \text{ and } \overline{\partial} f = \sum_{i=1}^{n} \frac{\partial f}{\partial \overline{z}_i} d\overline{z}_i.$$

CURRENTS

On the level of forms, if

$$\omega^{(r,s)} = \sum k_{i_1,\ldots,i_r,j_1,\ldots,j_s} dz_{i_1} \wedge \cdots \wedge dz_{i_r} \wedge d\overline{z}_{j_1} \wedge \cdots \wedge d\overline{z}_{j_s},$$

we let

$$\partial \omega^{(r,s)} = \sum \partial k_{i_1,\ldots,i_r,j_1,\ldots,j_s} \wedge dz_{i_1} \wedge \cdots \wedge dz_{i_r} \wedge d\overline{z}_{j_1} \wedge \cdots \wedge d\overline{z}_{j_s}$$

a form of type (r+1, s) and

$$\overline{\partial}\omega^{(r,s)} = \sum \overline{\partial}k_{i_1,\ldots,i_r,j_1,\ldots,j_s} \wedge dz_{i_1} \wedge \cdots \wedge dz_{i_r} \wedge d\overline{z}_{j_1} \wedge \cdots \wedge d\overline{z}_{j_s}$$

of type (r, s + 1).

CURRENTS

We are left with

$$d\omega^{(r,s)} = \partial\omega^{(r,s)} + \overline{\partial}\omega^{(r,s)}.$$

For an arbitrary p-form $\omega = \sum\limits_{r+s=p} \omega^{(r,s)}$, we put

$$\partial \omega = \sum_{r+s=p} \partial \omega^{(r,s)}$$
 and $\overline{\partial} \omega = \sum_{r+s=p} \overline{\partial} \omega^{(r,s)}$.

CURRENTS

We are left with

$$d\omega^{(r,s)} = \partial\omega^{(r,s)} + \overline{\partial}\omega^{(r,s)}.$$

For an arbitrary p-form $\omega = \sum_{r+s=p} \omega^{(r,s)}$, we put

$$\partial \omega = \sum_{r+s=p} \partial \omega^{(r,s)}$$
 and $\overline{\partial} \omega = \sum_{r+s=p} \overline{\partial} \omega^{(r,s)}$.

It follows that d = ∂ + ∂ and the following properties hold (exercise):

$$\partial(\omega^{p}\wedge\eta) = \partial\omega^{p}\wedge\eta + (-1)^{p}\omega^{p}\wedge\partial\eta,$$

$$\overline{\partial}(\omega^{p}\wedge\eta) = \overline{\partial}\omega^{p}\wedge\eta + (-1)^{p}\omega^{p}\wedge\overline{\partial}\eta.$$

Moreover, (exercise)

$$\partial \partial \omega^{(r,s)} + \overline{\partial} \partial \omega^{(r,s)} + \partial \overline{\partial} \omega^{(r,s)} + \overline{\partial} \overline{\partial} \omega^{(r,s)} = dd \omega^{(r,s)} = 0.$$

By comparing the form types in the above summation we conclude that

$$\partial^2 = \partial \partial = \mathbf{0} , \ \partial \overline{\partial} + \overline{\partial} \partial = \mathbf{0} , \ \overline{\partial}^2 = \overline{\partial} \overline{\partial} = \mathbf{0}.$$

A (p,0)-form ω^(p,0) = ∑ f_{i1,...,ip} dz_{i1} ∧ ··· ∧ dz_{ip} is holomorphic if the coefficients f_{i1,...,ip} are holomorphic functions. In this case,

$$\overline{\partial}\omega = \sum \overline{\partial}f_{i_1,\ldots,i_p} \wedge dz_{i_1} \wedge \cdots \wedge dz_{i_p} = 0.$$

Conversely, if $\overline{\partial}\omega^{(p,0)} = 0$, then ω has holomorphic coefficients. For holomorphic forms we have $\partial\omega = d\omega$.

CURRENTS

▶ Let $A^q_{\infty,c}(\mathbb{R}^n) = A^q_c(\mathbb{R}^n)$ be the space of C^∞ *q*-forms on \mathbb{R}^n with compact support.

CURRENTS

Let A^q_{∞,c}(ℝⁿ) = A^q_c(ℝⁿ) be the space of C[∞] q-forms on ℝⁿ with compact support.

Definition

The topological dual of $A_c^{n-q}(\mathbb{R}^n)$ is the space of currents of degree q, denoted $\mathcal{D}^q(\mathbb{R}^n)$. This means that $\mathcal{D}^q(\mathbb{R}^n)$ is the space of continuous linear forms T on $A_c^{n-q}(\mathbb{R}^n)$.

CURRENTS

Let A^q_{∞,c}(ℝⁿ) = A^q_c(ℝⁿ) be the space of C[∞] q-forms on ℝⁿ with compact support.

Definition

The topological dual of $A_c^{n-q}(\mathbb{R}^n)$ is the space of currents of degree q, denoted $\mathcal{D}^q(\mathbb{R}^n)$. This means that $\mathcal{D}^q(\mathbb{R}^n)$ is the space of continuous linear forms T on $A_c^{n-q}(\mathbb{R}^n)$.

Example 1. Let L^q_{loc}(ℝⁿ) be the space of q-forms u(x) = ∑_{|I|=q} u_{|I|}(x)dx_{|I|} whose coefficients u_{|I|}(x) are locally integrable.

$$T_u(\phi) = \int_{\mathbb{R}^n} u \wedge \phi, \qquad \phi \in A^{n-q}_c(\mathbb{R}^n)$$

is the degree q current associated to u.

Example 2. Let Γ be a piecewise smooth oriented n-q chain in ℝⁿ. Then

$$T_{\Gamma}(\phi) = \int_{\Gamma} \phi, \qquad \phi \in A_c^{n-q}(\mathbb{R}^n)$$

is the current in $\mathcal{D}^q(\mathbb{R}^n)$ defined by Γ .

This illustrates the concept of support: the supp(T) of the current T is the smallest closed set S such that $T(\phi) = 0$ for all $\phi \in A_c^{n-q}(\mathbb{R}^n \setminus S)$. In the above case $supp(T_{\Gamma}) = \Gamma$.

CURRENTS

The exterior derivative induces an operator

 $d:\mathcal{D}^q(\mathbb{R}^n)\longrightarrow\mathcal{D}^{q+1}(\mathbb{R}^n)$

which, by definition, is:

$$(dT)(\phi) = (-1)^{q+1}T(d\phi), \qquad \phi \in A^{n-q-1}_c(\mathbb{R}^n).$$

and it satisfies $d^2 = 0$. This is the beginning of residue theory.

CURRENTS

The exterior derivative induces an operator

 $d:\mathcal{D}^q(\mathbb{R}^n)\longrightarrow\mathcal{D}^{q+1}(\mathbb{R}^n)$

which, by definition, is:

$$(dT)(\phi) = (-1)^{q+1}T(d\phi), \qquad \phi \in A^{n-q-1}_c(\mathbb{R}^n).$$

and it satisfies $d^2 = 0$. This is the beginning of residue theory.

In example 1, by Stokes,

$$(dT_u)(\phi) = (-1)^{q+1} \int_{\mathbb{R}^n} u \wedge d\phi =$$

= $-\int_{\mathbb{R}^n} d(u \wedge \phi) + \int_{\mathbb{R}^n} du \wedge \phi =$
= $T_{du}(\phi).$

In example 2, by Stokes again,

$$(dT_{\Gamma})(\phi) = (-1)^{q+1} \int_{\Gamma} d\phi =$$

= $(-1)^{q+1} \int_{\partial \Gamma} \phi =$
= $(-1)^{q+1} T_{\partial \Gamma}(\phi).$

Let ω ∈ L^q_{loc}(ℝⁿ) be C[∞] outside a closed set S. Suppose that dω on ℝⁿ \ S extends to a locally integrable form on ℝⁿ. The RESIDUE is the current defined by

$$dT_{\omega} - T_{d\omega} = Res(\omega).$$

We have supp $Res(\omega) \subset S$.

CURRENTS

• In \mathbb{C} , consider the Cauchy kernel

$$\kappa = \frac{1}{2\pi i} \frac{dz}{z}.$$

Then, $\kappa \in L^{(1,0)}_{loc}(\mathbb{C})$ and is C^{∞} on $\mathbb{C} \setminus \{0\}$, $d\kappa = \overline{\partial}\kappa = 0$ on $\mathbb{C} \setminus \{0\}$ and by the smooth version of Cauchy's formula, for $\phi \in C^{\infty}_{c}(\mathbb{C})$

$$\phi(\mathsf{0}) = rac{1}{2\pi\mathrm{i}}\int_{\mathbb{R}^2}rac{\partial\phi(z)}{\partialar{z}}rac{dz\wedge dar{z}}{z}.$$

CURRENTS

• In \mathbb{C} , consider the Cauchy kernel

$$\kappa = \frac{1}{2\pi i} \frac{dz}{z}.$$

Then, $\kappa \in L^{(1,0)}_{loc}(\mathbb{C})$ and is C^{∞} on $\mathbb{C} \setminus \{0\}$, $d\kappa = \overline{\partial}\kappa = 0$ on $\mathbb{C} \setminus \{0\}$ and by the smooth version of Cauchy's formula, for $\phi \in C^{\infty}_{c}(\mathbb{C})$

$$\phi(\mathbf{0}) = rac{1}{2\pi\mathrm{i}}\int_{\mathbb{R}^2}rac{\partial\phi(z)}{\partialar{z}}rac{dz\wedge dar{z}}{z}$$

Hence T_{dκ} = 0 and dT_κ = ∂T_κ. But this reads
(∂T_κ)(φ) = φ(0) = δ₀(φ) and Res(κ) = δ₀, the Dirac function.

► This can be generalized to Cⁿ ≅ R²ⁿ by means of the Bochner-Martinelli kernel.

- ► This can be generalized to Cⁿ ≅ R²ⁿ by means of the Bochner-Martinelli kernel.
- We start with a kernel in Cⁿ × Cⁿ, which is the complex analogue of the Newtonian potential in Rⁿ × Rⁿ:

$$G(w, z) = \frac{-\frac{1}{2\pi} \log |w - z|^2}{\frac{(n-2)!}{2\pi^n} |w - z|^{2-2n}} \text{ for } n \ge 2$$

In what follows, w will denote the variable of integration and z will be a parameter and we let

$$\alpha_{2n-1} = \frac{2\pi^n}{(n-1)!}$$
 and $\Lambda = |w-z|^2$.

Notice that, since the area of the sphere $S_R^{2n-1} \subset \mathbb{C}^n$ of radius R is $\alpha_{2n-1} R^{2n-1}$, α_{2n-1} is just the area of the unit sphere S_1^{2n-1} .

CURRENTS

 The Bochner-Martinelli kernel (for functions) is the double form

$$K(w,z) = - * \partial_w G(w,z)$$

of type (n, n-1) in w and type (0, 0) in z. K(w, z) is represented by the form

$$\mathcal{K} = rac{(n-1)!}{(2\pi\mathrm{i})^n |w-z|^{2n}} \sum_{i=1}^n \left(ar w_i - ar z_i
ight) dw_i \wedge \left(igwedge_{j
eq i} d ar w_j \wedge dw_j
ight)$$

• Set n = 1 to get the Cauchy kernel

$$\kappa = \frac{1}{2\pi i} \frac{dw}{w - z}.$$

CURRENTS

• Set n = 1 to get the Cauchy kernel

$$\kappa = rac{1}{2\pi\mathrm{i}}rac{dw}{w-z}.$$

$$\bullet \ \overline{\partial}_w K(w,z) = 0 \text{ on } \mathbb{C}^n \times \mathbb{C}^n \setminus \{w = z\}.$$

CURRENTS

• Set n = 1 to get the Cauchy kernel

$$\kappa = \frac{1}{2\pi i} \frac{dw}{w - z}$$

 $\bullet \ \overline{\partial}_w K(w,z) = 0 \text{ on } \mathbb{C}^n \times \mathbb{C}^n \setminus \{w = z\}.$

 ∂

• *K* normalizes the area of spheres, more precisely: let $B_{\epsilon}(z)$ denote the euclidean ball centered at *z* and with radius ϵ . Then,

$$\int_{B_{\epsilon}(z)} K(w,z) = 1$$

for all $z \in \mathbb{C}^n$ and for all $\epsilon > 0$.

Finally we have the Bochner-Martinelli integral formula

Theorem

Let $U \subset \mathbb{C}^n$ be a limited domain whose boundary ∂U is a smooth manifold. Suppose $f : \overline{U} \to \mathbb{C}$ is continuous and f is holomorphic in U. Then,

$$\int_{\partial U} f(w) K(w, z) = \begin{cases} f(z) & \text{for } z \in U \\ 0 & \text{for } z \notin U. \end{cases}$$

 Proceeding verbatim as we did in the case of the Cauchy kernel in C, we have that

$$\overline{\partial}_w T_K = \delta_z$$

and

$$Res(K) = \delta_z.$$

CURRENTS

A current T ∈ D^q(ℝⁿ) may be considered as a differential form whose coefficients T_I are distributions:

$$T=\sum_{|I|=q}T_I\,dx_I$$

These distributions are defined by $T_l(\phi) = \pm T(\phi dx_{l_0})$ where $*dx_l = \pm dx_{l_0}$. The smoothing

$$T_{\epsilon} = \sum_{|I|=q} (T_I)_{\epsilon} \, dx_I$$

satisfies

$$dT_{\epsilon} = d(T_{\epsilon}).$$

 If M is a complex manifold, the currents D^(p,p)(M) of type (p, p) are the continuous linear forms on <u>A^{n-p,n-p}_c(M)</u>. A (p, p)-current is real if T = T, that is, <u>T(φ)</u> = T(φ) for all φ ∈ A^{n-p,n-p}_c(M).

 If M is a complex manifold, the currents D^(p,p)(M) of type (p, p) are the continuous linear forms on <u>A</u>^{n-p,n-p}_c(M). A (p, p)-current is real if T = T, that is, <u>T(φ)</u> = T(φ) for all φ ∈ A^{n-p,n-p}_c(M).

A real current is positive if

$$\mathrm{i}^{p(p-1)/2} T(\eta \wedge \overline{\eta}) \geq 0, \qquad \eta \in A^{n-p,0}_c(M).$$

The positivity of T implies that it has order 0 in the sense of distributions and hence defines a measure (positive).

An important example is: if Z ⊂ M is a codimension p analytic subvariety and Z_{reg} is the set of smooth points of Z, then the map

$$T_Z(\phi) = \int\limits_{Z_{reg}} \phi, \qquad \phi \in A^{n-p,n-p}_c(M)$$

defines a closed positive current, which is the fundamental class of Z via the isomorphism

$$H^{\bullet}_{DR}(M) \approx H^{\bullet}(\mathcal{D}^{\bullet}(M), d).$$
► A C[∞] (1, 1)-form

$$\omega = rac{\mathrm{i}}{2}\sum_{i,j}h_{ij}\,dz_i\wedge dar{z}_j$$

is real if $\overline{h_{ij}} = h_{ji}$, positive if the matrix h_{ij} is positive definite and closed when the associated hermitian metric $ds^2 = \sum_{i,j} h_{ij} dz_i d\overline{z}_j$ is Kähler.

CURRENTS

A real function φ ∈ L¹_{loc}(M) is plurisubharmonic in case i∂∂φ is a positive (1, 1)-current (derivatives are in the sense of distributional derivatives). There is the ∂∂-Poincaré lemma:

CURRENTS

- A real function φ ∈ L¹_{loc}(M) is plurisubharmonic in case i∂∂φ is a positive (1, 1)-current (derivatives are in the sense of distributional derivatives). There is the ∂∂-Poincaré lemma:
- ▶ Let T be a closed, positive (1,1)-current. Then, locally,

$$T = i\partial \overline{\partial} \phi$$

for a real plurisubharmonic function ϕ , uniquely determined up to addition of the real part of a holomorphic function.

Now we specialize to M = Pⁿ_C, the complex projective space of dimension n.

- Now we specialize to M = Pⁿ_C, the complex projective space of dimension n.
- ► A foliation of dimension 1, *F*, on Pⁿ_C is, vaguely saying, the set of orbits of a rational vector field. In a precise way, it is generated by a nontrivial holomorphic section

$$s\in H^0({\mathbb{P}}^n_{\mathbb{C}},\Theta_{{\mathbb{P}}^n_{\mathbb{C}}}\otimes \mathcal{O}(d-1))$$

where *d* is an integer, the degree of \mathcal{F} . We suppose that the singular set of \mathcal{F} (the zeros of *s*) has codimension at least two, which means that *s* is uniquely determined up to a multiplicative constant. This tells us that the space Fol(d, n) is Zariski open in $\mathbb{P}(H^0(\mathbb{P}^n_{\mathbb{C}}, \Theta_{\mathbb{P}^n_{\mathbb{C}}} \otimes \mathcal{O}(d-1))).$

CURRENTS

Write S(F) for the singular set of F. Outside S(F) we have a nonsingular foliation F_{reg} = F_{|ℙⁿ_C\S(F)}. For nonsingular foliations there is a notion of invariant measures which we describe briefly:

- Write S(F) for the singular set of F. Outside S(F) we have a nonsingular foliation F_{reg} = F_{|ℙⁿ_C\S(F)}. For nonsingular foliations there is a notion of invariant measures which we describe briefly:
- ► Let D be a finite union of closed discs transverse to the foliation, whose interiors meet every leaf. If a path on one leaf connects 2 points x and y in D, with y in the interior, the foliation determines a germ of homeomorphism from a neighborhood of x in D into one of y in D.

A transversal invariant measure for the foliation is a non-negative measure of finite mass on D which is compatible with all the germs of homeomorphisms determined by the foliation.

- A transversal invariant measure for the foliation is a non-negative measure of finite mass on D which is compatible with all the germs of homeomorphisms determined by the foliation.
- ► D. Sullivan showed that: There exists a natural bijective correspondence between invariant measures for *F_{reg}* and *invariant* closed positive (1, 1)-currents (recall that *F* has complex dimension 1, hence real dimension 2).

- A transversal invariant measure for the foliation is a non-negative measure of finite mass on D which is compatible with all the germs of homeomorphisms determined by the foliation.
- ► D. Sullivan showed that: There exists a natural bijective correspondence between invariant measures for *F_{reg}* and *invariant* closed positive (1, 1)-currents (recall that *F* has complex dimension 1, hence real dimension 2).
- A closed positive current T on Pⁿ_C \ S(F) is invariant by F if T(ω) = 0 for every 2-form ω which vanishes on the leaves of F.

Let us exemplify this:

CURRENTS

- Let us exemplify this:
- Locally, take coordinates (z₁,..., z_n) on Pⁿ_C \ S(F), such that F is generated by ∂/∂z₁. Let

$$\omega_i = dz_1 \wedge \cdots \wedge \widehat{dz_i} \wedge \cdots \wedge dz_n, \ 1 \leq n.$$

CURRENTS

- Let us exemplify this:
- Locally, take coordinates (z₁,..., z_n) on Pⁿ_C \ S(F), such that F is generated by ∂/∂z₁. Let

$$\omega_i = dz_1 \wedge \cdots \wedge \widehat{dz_i} \wedge \cdots \wedge dz_n, \ 1 \leq n.$$

• The positive current T can be locally written in the form

$$T = \sum_{i,j=1}^n f_{ij} \, \mathrm{i} \, \omega_i \wedge \overline{\omega}_j$$

where f_{ij} are complex valued measures.

CURRENTS

▶ To say that T is \mathcal{F} -invariant means $T \land dz_i = 0$ and $T \land d\overline{z}_i = 0$ for all $i \neq 1$. This gives $f_{ij} = 0$ for $(i,j) \neq (1,1)$ and then

$$T=f_{11}\,\mathrm{i}\,\omega_1\wedge\overline{\omega}_1.$$

CURRENTS

▶ To say that *T* is *F*-invariant means $T \land dz_i = 0$ and $T \land d\overline{z}_i = 0$ for all $i \neq 1$. This gives $f_{ij} = 0$ for $(i,j) \neq (1,1)$ and then

$$T=f_{11}\,\mathrm{i}\,\omega_1\wedge\overline{\omega}_1.$$

➤ T closed means that its distributional derivatives along z₁ and z
₁ are 0. Hence, T does not depend on z₁ and projects to a positive measure on the local transversal z₁ = 0 (invariant by the holonomy).

CURRENTS

▶ To say that *T* is \mathcal{F} -invariant means $T \land dz_i = 0$ and $T \land d\overline{z}_i = 0$ for all $i \neq 1$. This gives $f_{ij} = 0$ for $(i,j) \neq (1,1)$ and then

$$T=f_{11}\,\mathrm{i}\,\omega_1\wedge\overline{\omega}_1.$$

- ➤ T closed means that its distributional derivatives along z₁ and z
 ₁ are 0. Hence, T does not depend on z₁ and projects to a positive measure on the local transversal z₁ = 0 (invariant by the holonomy).
- Suppose now that the foliation has only isolated singularities, hence S(F) is a finite number of points. This is the generic situation. In this case the closed positive current T can be extended to all of Pⁿ_C (Hartogs).

We want to comment on the following result of M. Brunella (2006):

We want to comment on the following result of M. Brunella (2006):

Theorem

Given $n \ge 2$ and $d \ge 2$, there exists an open and dense subset $\mathbf{U} \subset Fol(n, d)$ such that any $\mathcal{F} \in \mathbf{U}$ has no invariant measure.

We want to comment on the following result of M. Brunella (2006):

Theorem

Given $n \ge 2$ and $d \ge 2$, there exists an open and dense subset $\mathbf{U} \subset Fol(n, d)$ such that any $\mathcal{F} \in \mathbf{U}$ has no invariant measure.

► Lins Neto and S. proved the following (1996):

We want to comment on the following result of M. Brunella (2006):

Theorem

Given $n \ge 2$ and $d \ge 2$, there exists an open and dense subset $\mathbf{U} \subset Fol(n, d)$ such that any $\mathcal{F} \in \mathbf{U}$ has no invariant measure.

► Lins Neto and S. proved the following (1996):

Theorem

Given $n \ge 2$ and $d \ge 2$, there exists an open and dense subset $\mathbf{U} \subset Fol(n, d)$ such that any $\mathcal{F} \in \mathbf{U}$ has no invariant algebraic curve.

We want to comment on the following result of M. Brunella (2006):

Theorem

Given $n \ge 2$ and $d \ge 2$, there exists an open and dense subset $\mathbf{U} \subset Fol(n, d)$ such that any $\mathcal{F} \in \mathbf{U}$ has no invariant measure.

► Lins Neto and S. proved the following (1996):

Theorem

Given $n \ge 2$ and $d \ge 2$, there exists an open and dense subset $\mathbf{U} \subset Fol(n, d)$ such that any $\mathcal{F} \in \mathbf{U}$ has no invariant algebraic curve.

• **U** is exactly the same set in both theorems.

U is the set of foliations with the following two properties: (i) all the singularities of *F* are hyperbolic and (ii) *F* has no invariant algebraic curve.

- U is the set of foliations with the following two properties: (i) all the singularities of *F* are hyperbolic and (ii) *F* has no invariant algebraic curve.
- A singularity p of F is hyperbolic if around p the foliation is generated by a vector field whose linear part at has eigenvalues λ₁,..., λ_n such that

$$\frac{\lambda_i}{\lambda_j} \not\in \mathbb{R}$$

Brunella's proof runs as follows: he produces a residue theorem for currents which gives a relation between these residues and a global geometric object associated to the foliation:

Brunella's proof runs as follows: he produces a residue theorem for currents which gives a relation between these residues and a global geometric object associated to the foliation:

$$c_1(\det N^*_{\mathcal{F}}).[T] = \sum_{p \in S(\mathcal{F}) \cap supp(T)} Res(\mathcal{F}, T, p)$$

where $c_1(\det N^*_{\mathcal{F}}) \in H^2(\mathbb{P}^n_{\mathbb{C}}, \mathbb{R})$ is the first Chern class of the conormal bundle of \mathcal{F} and $[T] \in H_2(\mathbb{P}^n_{\mathbb{C}}, \mathbb{R})$ id the homology class of T.

► Then, assuming the foliation has no invariant algebraic curves and only hyperbolic singularities, it's shown that Res(F, T, p) = 0. But this implies that c₁(det N^{*}_F).[T] = 0 which is absurd since det N^{*}_F = O(-n - d), a negative line bundle which has negative degree on any positive homology class, like [T] for instance.