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MANIFOLDS

» A complex manifold (C*, C>®, C¥ = real analytic) of
dimension n is a topological space M, which is Hausdorff,
connected and with a countable basis, endowed with an
analytic structure defined as follows: there exists an open
covering {U, }aca of M and homeomorphisms
Yo @ Uy — V,, where V,, C C" (V,, C R") is open, such
that the transition maps ¢, o 4,051 are holomorphic
(Ck, C>, C¥) where defined. ¢, is called a chart and,
forze M, p,(z) = (2,...,2%) € C" are called the local
coordinates in U,. The collection {U,, ¢} is called a
holomorphic (C*, C*>, C¥) atlas for M.
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MANIFOLDS

» If M has dimension n, a connected subset N C M is a
submanifold of dimension m < n if, for each z € N there
exists a chart {U,, ¢, }, with z € U,, such that ¢, is a
homeomorphism between U, N N and an open set of
Cm"x {0} cC"xCrm=C".
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MANIFOLDS

» If M has dimension n, a connected subset N C M is a
submanifold of dimension m < n if, for each z € N there
exists a chart {U,, ¢, }, with z € U,, such that ¢, is a
homeomorphism between U, N N and an open set of
Cm"x {0} cC"xCrm=C".

» Given manifolds M and N, amap f: M — N is
holomorphic (Ck, C*, C*) provided the compositions
Yg o f op,! are holomorphic (Ck, C*, C¥) where
defined, with 13 and ¢, charts in N and M respectively.
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MANIFOLDS

» If M has dimension n, a connected subset N C M is a
submanifold of dimension m < n if, for each z € N there
exists a chart {U,, ¢, }, with z € U,, such that ¢, is a
homeomorphism between U, N N and an open set of
Cm"x {0} cC"xCrm=C".

» Given manifolds M and N, amap f: M — N is
holomorphic (Ck, C*, C*) provided the compositions
Yg o f op,! are holomorphic (Ck, C*, C¥) where
defined, with 13 and ¢, charts in N and M respectively.

» X C M is an analytic set if, for each z € M there is an
open neighborhood U C M of z and a holomorphic map
f . U — C’such that X N U = f~1(0) (¢ may depend
on z).
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MANIFOLDS

» If W C M is open and ¢ € Zso U {oo,w} then C{(W,C)
(CY(W,R)) is the space of functions of class C* on W.
In case W is not open, it is the space of functions which
admit a C? extension to a neighborhood of W.
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MANIFOLDS

» If W C M is open and ¢ € Zso U {oo,w} then C{(W,C)
(CY(W,R)) is the space of functions of class C* on W.
In case W is not open, it is the space of functions which
admit a C? extension to a neighborhood of W.

» Tangent space. Given z € M, write

va(z) = (2. 27) =
= (X + g, X iy =
(X, s xS yY).

» Note that M is naturally a real analytic manifold of
dimension 2n.
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MANIFOLDS

» The real tangent space of M at z,T,M is, by definition,
the space of differential operators v : C}(U,R) — R,
where z € U C M is open satisfying (v is called a tangent
vector): (i) v is R-linear and
(il v(fe) = g(2)u(F) + F(2)v(g).
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MANIFOLDS

» The real tangent space of M at z,T,M is, by definition,
the space of differential operators v : C}(U,R) — R,
where z € U C M is open satisfying (v is called a tangent
vector): (i) v is R-linear and
(il v(fe) = g(2)u(F) + F(z2)(g).

o of B A(f o pa)
» By definition, %(Z) T oxe

i i

(pal(z)) and similarly
for the y?'s.
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MANIFOLDS

» The real tangent space of M at z,T,M is, by definition,
the space of differential operators v : C}(U,R) — R,
where z € U C M is open satisfying (v is called a tangent
vector): (i) v is R-linear and
(il v(fe) = g(2)u(F) + F(z2)(g).

o of B A(f o pa)
» By definition, %(Z) T oxe

i i

(pal(z)) and similarly
for the y?'s.

0 :
» Hence, ——(z) is a tangent vector at z and

0x

i

5 9 4 0
{a_xfl(z)7 5’_}/{1(2)’ cey a—xg(z)y ayg (Z)}

is a real basis of T,M (exercise).
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Currents

MANIFOLDS

» Complexify T,M, that is, T,M® = T,M ® C (= simply
allow multiplication by complex numbers). This is a
C-vector space with dim¢ T,M® = 2n. For z € U,,
choose for T,MC the basis

(20 20 ) )
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Currents

MANIFOLDS

» Let's examine changes of coordinates. Set

Oup = Pa © gogl. Write
eaﬁ(xbyla s 7Xn7_yn) = (Ul, Vi,..., Un, Vn) (real
coordinates). The derivative is given by the matrix
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MANIFOLDS

» Let's examine changes of coordinates. Set
Oup = Pa © gogl. Write

eaﬁ(xbyla s 7Xn7_yn) = (Ul, Vi,..., Un, Vn) (real
coordinates). The derivative is given by the matrix

O(ur, v1) o O(Un, vp)

. a(X17y1) a(Xna.yn)
D@aﬁ = : :

O(Un, vp) . O(Un, vp)

a(X17.y1) a(men)
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MANIFOLDS

» Now write ©,5 = (64, ...,0,) where éj = uj +1iv;.
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MANIFOLDS

» Now write ©,5 = (64, ...,0,) where éj = uj +1iv;.
» Changing from the basis

0 0 0 0
{a—xl<z),a—yl<z),...,a—xn(z), ayn(z)}

to the basis

{a%(z), a%(z), . aizn(z), %(Z)}
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MANIFOLDS

» and finally changing from the basis

{3%(2)7 aimai()ai()}

to the basis

{a%(z), o a%(z), 6%(2), s 8%(2)}
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MANIFOLDS

» the derivative D(:jaﬁ has the matrix

~ SN 0
D@a5:< Oﬁ éqﬁ)

00;
s = (a_>
7/ 1<ij<n

where
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MANIFOLDS

» the derivative D(:jaﬁ has the matrix

~ O 0

00;
Ses = (a_>
7/ 1<ij<n

» Hence, det Déaﬁ = det ©,3 det (:)aﬁ = |det®us* >0
and complex manifolds are born orientable.

where
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MANIFOLDS

» We use this last basis to decompose T,MC into 2
subspaces.
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MANIFOLDS

» We use this last basis to decompose T,MC into 2
subspaces.

/M = <8%(z), . 32’1(2)>(C

the holomorphic tangent space and
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MANIFOLDS

» We use this last basis to decompose T,MC into 2
subspaces.

/M = <8%(z), . 32’1(2)>(C

the holomorphic tangent space and

N . 0
TzM - <821(Z)7‘ R azn(2)>(c

the anti-holomorphic tangent space.

M. G. Soares - UFMG



MANIFOLDS

» We use this last basis to decompose T,MC into 2
subspaces.

TIM = <ai( ) ...(in(z)>(C

the holomorphic tangent space and

N . 0
TzM - <821(Z)7‘ R azn(2)>(c

the anti-holomorphic tangent space.
» So T,MC=T'Ma T'M.
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MANIFOLDS

» Let's restrict now to real manifolds (just to avoid heavy
notation). So suppose M is a real manifold of dimension
m and class C*.
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MANIFOLDS

» Let's restrict now to real manifolds (just to avoid heavy
notation). So suppose M is a real manifold of dimension
m and class C*.

» A tangent vector v at a € M acts on functions and
df,.v = v(f) = > T v;0f /0x;(a).
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MANIFOLDS

» Let's restrict now to real manifolds (just to avoid heavy
notation). So suppose M is a real manifold of dimension
m and class Ck.

» A tangent vector v at a € M acts on functions and
df,.v = v(f) = > T v;0f /0x;(a).

» Since dx;.v = v; we have df = ['(0f /0x;)dx;. This
means that the dual basis of {0f /0xq,...,0f /Oxpy} is
{dxq,...,dxy}. The dual space T;M of T,M is called
the cotangent space.
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MANIFOLDS

» Let's restrict now to real manifolds (just to avoid heavy
notation). So suppose M is a real manifold of dimension
m and class C*.

» A tangent vector v at a € M acts on functions and
df,.v = v(f) = > T v;0f /0x;(a).

» Since dx;.v = v; we have df = ['(0f /0x;)dx;. This
means that the dual basis of {0f /0xq,...,0f /Oxpy} is
{dxq,...,dxy}. The dual space T;M of T,M is called
the cotangent space.

» The disjoint unions TM = Uyey T,M and
T*M = Uyem T; M are the tangent and cotangent
bundles of M.
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MANIFOLDS

» Consider the real algebra A* generated by dxq, ..., dx,
with the relations dx; A dx; = 0 and dx; A dx; = —dx; A dx;
for i # j. As a vector space this algebra has basis:

1, dx;, dx; A dx;(i < j), dx; A dx; A dx(i < j < k), ...
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MANIFOLDS

» Consider the real algebra A* generated by dxq, ..., dx,
with the relations dx; A dx; = 0 and dx; A dx; = —dx; A dx;
for i # j. As a vector space this algebra has basis:

1, dx;, dx; A dx;(i < j), dx; A dx; A dx(i < j < k), ...
» Differential forms of class CX on R" are elements of

CK(R",R) @ A*.
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MANIFOLDS

» Consider the real algebra A* generated by dxq, ..., dx,
with the relations dx; A dx; = 0 and dx; A dx; = —dx; A dx;
for i # j. As a vector space this algebra has basis:

1, dx;, dx; A dx;(i < j), dx; A dx; A dx(i < j < k), ...
» Differential forms of class CX on R" are elements of
CK(R",R) @ A*.

» The same applies locally to manifolds.
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MANIFOLDS

» Hence, a differential form of degree q, or a g-form on M,
is a map v on M with values u(x) € AT M. In an open
coordinate patch U C M, u(x) can be written

u(x) = > u(x)axy,

ll=q

where | = (i1, ..., Iy) is a multi-index, i; < --- < iy and
dX|/| = CIX,'1 A A dX,'q.
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MANIFOLDS

» Hence, a differential form of degree q, or a g-form on M,
is a map v on M with values u(x) € AT M. In an open
coordinate patch U C M, u(x) can be written

u(x) = > u(x)axy,

ll=q

where | = (i1, ..., Iy) is a multi-index, i; < --- < iy and
dX|/| = CIX,'1 A A dX,'q.

» Forall0 < g <m,0< k< oo, A](M) denotes the space
of CK g-forms on M, i.e., forms with ) functions of
class Ck.
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MANIFOLDS

» The exterior derivative is the operator
d : AU(M) — AT (M)
defined locally by

du = Z dUm A dX|/|
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MANIFOLDS

» The exterior derivative is the operator
d : AU(M) — AT (M)
defined locally by
du = Z duyy N dxjy

» It satisfies d(u A v) = du A v + (—1)%€“u A dv and
d? = 0.
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MANIFOLDS

» The exterior derivative is the operator
d : AU(M) — AT (M)
defined locally by
du = Z duyy N dxjy

» It satisfies d(u A v) = du A v + (—1)%€“u A dv and
d?>=0.

» A form u is closed if du = 0 and exact if u = dv for some
form v.
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Currents

MANIFOLDS

> FinaIIyI a cohomological complex K*® = @qel K9 is a
collection of modules over a ring, endowed with
differentials, that is, linear maps d9 : K9 —s K9+1
satisfying d9t1 o d9 = 0.
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Currents

MANIFOLDS

» Finally, a cohomological complex K*® = @qel K9is a
collection of modules over a ring, endowed with
differentials, that is, linear maps d9 : K9 —s K9+1
satisfying d9t1 o d9 = 0.

» The associated cocycle, coboundary and cohomology
modules are defined respectively by

Z9(K*) = kerd?,  Z9(K*) C K9
BI(K*) =Imd7t,  BI(K*) C Z9(K*) C K¢
HI(K®) = Z9(K*)/B(K*)
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MANIFOLDS

» If M is a real C* manifold, the De Rham complex of M
is the cohomological complex

A (M) = €D AL (M)

q>0

with differential d, the exterior derivative.
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MANIFOLDS

» If M is a real C* manifold, the De Rham complex of M
is the cohomological complex

A (M) = €D AL (M)

q>0

with differential d, the exterior derivative.

» We denote its cohomology groups by
HRp(M,R) = Z9(M,R)/B9(M,R).
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Currents

MANIFOLDS

» A real manifold M is orientable in case it admits an atlas
with all transition maps ¢, o gp/gl with positive jacobian
determinant. Suppose M is oriented by such an atlas. If
u(x) = g(x1,...,xn)dxy A -+ A dxy is a continuous
m-form on M, with m = dimg M, with compact support
in a coordinate system, define [, u= [, fdx; ... dxn.
This is independent of the coordinate system
(orientability). If u has compact support, we extend this
definition of fM u by means of a partition of unity.
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Currents

MANIFOLDS

» Now, if K C M is a compact set with piecewise C?
boundary OK, it's possible to give an orientation to JK in
such a way that for any differential form of class C! and
of degree m — 1 we have

/ u:/du.
K K

This is Stokes formula.
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Currents

CURRENTS

» A C* p-form w on U C C" is given by a sum of terms of
the types fidx;, g;dy, and hyd(x,y)k, where
dx; = dxy Ndxi, N+ Ndx;,, dy; = dy, Ndy, A+ A dy;,,
d(x,y)k is a product of p-forms of types dx; and dy;, and
fi, g, hk are smooth complex valued functions.
NOW, dX,' = (1/2)(d2, + dZ,) and dy,' = (1/21)(d2, — dZ,)
Expressing the terms in w by using dz; and dz; we arrive
at

.....

which we abbreviate as w = Y k; j dz; A dz;. We say that
each term of this sum is a p-form of type (r,s), r+s = p.

M. G. Soares - UFMG



CURRENTS

» It follows that a p-form w has a unique expression as a
sum
w = w(pvo) _|_ w(P_lvl) _I_ e _|_ w(ovp)7

where w("%) is of type (r, s).
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CURRENTS

» It follows that a p-form w has a unique expression as a

sum
w = w(P,O) _|_ w(P_lvl) _I_ e _|_ w(ovp)7

where w("%) is of type (r, s).

» Let A°(U) be the C-algebra C>°(U,C) and AP(U) the
A%(U)-module of C> complex p-forms on U. The
decomposition above induces a decomposition

AP(U) = APO(U) @ APID(U) @ --- @ ALP(U).

We have the exterior differential d : AP(U) — APTL(U).
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CURRENTS
» For f € A°(UV)
df = dz, + Z dz,

Define, on the level of functions,

~ Of - f
= Za—dz,- and Of = 0 —dz;.
1 82,- 8

i=1
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Currents

CURRENTS

» On the level of forms, if
w(re) = Z Kiy,.oosivuregs 92 N - N dzip NdZg N -+ N dZ,
we let
O(rs) — Z Okiy i jr. Nz A - -Adz ANdZj N+ - -NdZ,
a form of type (r +1,s) and
) = 3" 0k s, NIz A+ - Az AdZ A - AdZ,

of type (r,s +1).

M. G. Soares - UFMG



CURRENTS

» We are left with

dw™9) = 9w(r®) 4+ guwlrs).

For an arbitrary p-form w = ) w"s) we put
r+s=p
Oow = Z 0w and Ow = Z Ow(),
r+s=p r+s=p
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CURRENTS
» We are left with
dw™9) = 9w(r®) 4+ guwlrs).

For an arbitrary p-form w = ) w"s) we put
r+s=p

Oow = Z 0w and Ow = Z Ow(),

r+s=p r+s=p

» It follows that d = 0 + O and the following properties
hold (exercise):

IwP An) = dwP An+ (—1)PwP A dn,

O(wP An) = OwP A+ (—1)PwP A .



CURRENTS

» Moreover, (exercise)
00w + 00w + 00w + 0 0w = ddw!™) = 0.

By comparing the form types in the above summation we
conclude that

P=00 =0, d00+00 =0, =00 = 0.
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CURRENTS

ide,'I N A dZ,'P is
i, are holomorphic

.....

,,,,,

5&) = ng;l 77777 iP/\dZil/\"'/\dZ;p -0

Conversely, if OwP9) = 0, then w has holomorphic
coefficients. For holomorphic forms we have dw = dw.
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CURRENTS

> Let A7 (R") = AZ(R") be the space of C*° g-forms on
R" with compact support.
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Currents

CURRENTS

> Let A7 (R") = AZ(R") be the space of C*° g-forms on
R" with compact support.

» Definition
The topological dual of AZ~9(R") is the space of currents of
degree q, denoted DI(R"). This means that DI(R") is the
space of continuous linear forms T on AZ~9(R").
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Currents

CURRENTS

> Let A7 (R") = AZ(R") be the space of C*° g-forms on
R" with compact support.

» Definition
The topological dual of AZ~9(R") is the space of currents of
degree q, denoted DI(R"). This means that DI(R") is the
space of continuous linear forms T on AZ~9(R").

» Example 1. Let L} (R") be the space of g-forms
u(x) = 32 1=q Ui (x)dx whose coefficients v (x) are
locally integrable.

()= [(wno.  seare@)

is the degree g current associated to u.
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CURRENTS

» Example 2. Let [ be a piecewise smooth oriented n-q
chain in R"”. Then

TH(6) = /r b, He AR

is the current in DI(R") defined by T

This illustrates the concept of support: the supp(T) of
the current T is the smallest closed set S such that
T(¢) =0 for all p € AZ79(R"\ S). In the above case

supp(Tr) =T.
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CURRENTS

» The exterior derivative induces an operator
d : DI(R") — DI(R")
which, by definition, is:
(dT)(¢) = (-1)*T(dg), ¢ €ATTH(R").

and it satisfies d> = 0. This is the beginning of residue
theory.
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Currents

CURRENTS
» The exterior derivative induces an operator
d : DI(R") — DI(R")
which, by definition, is:
(dT)() = (~1)™1T(dg), 6 AT <L (R").

and it satisfies d> = 0. This is the beginning of residue
theory.

» In example 1, by Stokes,

(dT,)(6) = (~1)*1 / undo =

n

:—/ d(u/\gﬁ)%—/R du ¢ =
n Rn

- Tdu((lﬁ)
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Currents

CURRENTS

» In example 2, by Stokes again,

(dT)(6) = (~1)7" / dé =
(0 [ o=
(~1)71 Tor (0).
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CURRENTS

» Let w € L] _(R") be C* outside a closed set S. Suppose

loc
that dw on R" \ S extends to a locally integrable form on

R"”. The RESIDUE is the current defined by
dT, — T4, = Res(w).

We have supp Res(w) C S.
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CURRENTS

» In C, consider the Cauchy kernel
1 dz
k=——

27 z

Then, k € L(l’o)((C) and is C* on C\ {0}, dk = 0k =0

loc

on C\ {0} and by the smooth version of Cauchy's
formula, for ¢ € C°(C)

1 [ 04(z) dz N dz
|

0z z

¢(0) =

27
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CURRENTS

» In C, consider the Cauchy kernel

1 dz
"oz
Then, k € Lﬁ;o)((C) and is C* on C\ {0}, dk = 0k =0
on C\ {0} and by the smooth version of Cauchy's
formula, for ¢ € C°(C)

1 [ 04(z) dz N dz
|

0z z

¢(0) =

27

> H_ence T4. =0 and dT,, = OT,. But this reads
(0T:)(¢) = ¢(0) = do(¢) and Res(x) = do, the Dirac
function.
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CURRENTS

» This can be generalized to C" =2 R?" by means of the
Bochner-Martinelli kernel.
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Currents

CURRENTS

» This can be generalized to C" =2 R?" by means of the
Bochner-Martinelli kernel.

» We start with a kernel in C” x C”, which is the complex
analogue of the Newtonian potential in R" x R":
1 2
—2—Iog|w—z| forn=1
™
G(w,z) =
(n—2)!

o lw — z|>7*" for n>2
7T
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CURRENTS

» In what follows, w will denote the variable of integration
and z will be a parameter and we let

27"

Qop_1 = m and A= |W — Z|2.

Notice that, since the area of the sphere 5,%”_1 C C" of
radius R is ao,_1 R?"1, app_1 is just the area of the unit
sphere S 1.
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Currents

CURRENTS

» The Bochner-Martinelli kernel (for functions) is the
double form

K(w,z)=—x0,G(w,z)

of type (n,n — 1) in w and type (0,0) in z.
K(w, z) is represented by the form

n—1)! .
K = (27ri()”|w—)z|2” Z(W —Z;) dw; A (/\dwj/\dwj>.

i=1 JFEI
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CURRENTS

» Set n =1 to get the Cauchy kernel
1 dw

K= — .
2miw — z
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CURRENTS

» Set n =1 to get the Cauchy kernel
1 dw

K= — .
2miw — z

» 0y K(w,z) =00n C" x C"\ {w = z}.
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Currents

CURRENTS

» Set n =1 to get the Cauchy kernel

1 dw
K= — .
2miw — z

» 0 K(w,z) =00on C"x C"\ {w = z}.
» K normalizes the area of spheres, more precisely: let
B.(z) denote the euclidean ball centered at z and with

radius €. Then,
/ K(w,z) =

9B.(z)
for all z € C" and for all ¢ > 0.
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Currents

CURRENTS

» Finally we have the Bochner-Martinelli integral formula

Theorem

Let U C C" be a limited domain whose boundary OU is a
smooth manifold. Suppose f : U — C is continuous and f is
holomorphic in U. Then,

f(z) forzeU

/f(w) K(w, 7) =
SU 0 forzé& U.
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CURRENTS

» Proceeding verbatim as we did in the case of the Cauchy
kernel in C, we have that

and
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CURRENTS

» A current T € DI(R") may be considered as a differential
form whose coefficients T, are distributions:

T:ZT,dx,

ll=q

These distributions are defined by T;(¢) = =T (¢dx;,)
where xdx; = £dx;,. The smoothing

T.=) (T).dx

lll=q

satisfies
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Currents

CURRENTS

» If M is a complex manifold, the currents D(PP)(M) of

type (p, p) are the continuous linear forms on
Al=Pn=P(M). A (p, p)-current is real if T = T, that is,

T(¢) = T(9) for all ¢ € AT-P1—P(M).
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Currents

CURRENTS

» If M is a complex manifold, the currents D(PP)(M) of
type (p, p) are the continuous linear forms on
Al=Pn=P(M). A (p, p)-current is real if T = T, that is,

T(¢) = T(9) for all ¢ € AT-P1—P(M).

» A real current is positive if

PEDET(AT) 20, e ATPO(M).

The positivity of T implies that it has order 0 in the sense
of distributions and hence defines a measure (positive).
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» An important example is: if Z C M is a codimension p
analytic subvariety and Z,; is the set of smooth points of
Z, then the map

T2(¢)= [ &, o€ ATP"P(M)
!

defines a closed positive current, which is the
fundamental class of Z via the isomorphism

HAr(M) ~ H*(D*(M), d).
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» A C* (1,1)-form
1 -
w = EZh,-jdz,-/\dzj
ij

is real if h_,J = hj;, positive if the matrix hj; is positive
definite and closed when the associated hermitian metric
ds® = 3, hjdzidz; is Kahler.
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» A real function ¢ € L}, (M) is plurisubharmonic in case
100¢ is a positive (1, 1)-current (derivatives are in the
sense of distributional derivatives). There is the

00-Poincaré lemma:
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» A real function ¢ € L}, (M) is plurisubharmonic in case
100¢ is a positive (1, 1)-current (derivatives are in the
sense of distributional derivatives). There is the

d90-Poincaré lemma:
» Let T be a closed, positive (1, 1)-current. Then, locally,

T =i00¢

for a real plurisubharmonic function ¢, uniquely
determined up to addition of the real part of a
holomorphic function.
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» Now we specialize to M = P{, the complex projective
space of dimension n.

M. G. Soares - UFMG



CURRENTS

» Now we specialize to M = P{, the complex projective
space of dimension n.

» A foliation of dimension 1, F, on P is, vaguely saying,
the set of orbits of a rational vector field. In a precise
way, it is generated by a nontrivial holomorphic section

s € HY(P,Op ® O(d — 1))

where d is an integer, the degree of F. We suppose that
the singular set of F (the zeros of s) has codimension at
least two, which means that s is uniquely determined up
to a multiplicative constant. This tells us that the space
Fol(d, n) is Zariski open in P(H°(PZ, ©p: @ O(d — 1))).
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» Write S(F) for the singular set of F. Outside S(F) we
have a nonsingular foliation Fe, = E]}DE\S(}'). For
nonsingular foliations there is a notion of invariant
measures which we describe briefly:
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» Write S(F) for the singular set of F. Outside S(F) we
have a nonsingular foliation Fe, = E]}DE\S(}'). For
nonsingular foliations there is a notion of invariant
measures which we describe briefly:

» Let © be a finite union of closed discs transverse to the
foliation, whose interiors meet every leaf. If a path on one
leaf connects 2 points x and y in ®, with y in the interior,
the foliation determines a germ of homeomorphism from
a neighborhood of x in ® into one of y in .
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» A transversal invariant measure for the foliation is a
non-negative measure of finite mass on ® which is
compatible with all the germs of homeomorphisms
determined by the foliation.
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» A transversal invariant measure for the foliation is a
non-negative measure of finite mass on ® which is
compatible with all the germs of homeomorphisms
determined by the foliation.

» D. Sullivan showed that: There exists a natural bijective
correspondence between invariant measures for F,., and
invariant closed positive (1,1)-currents (recall that F has
complex dimension 1, hence real dimension 2).
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» A transversal invariant measure for the foliation is a
non-negative measure of finite mass on ® which is
compatible with all the germs of homeomorphisms
determined by the foliation.

» D. Sullivan showed that: There exists a natural bijective
correspondence between invariant measures for F,., and
invariant closed positive (1,1)-currents (recall that F has
complex dimension 1, hence real dimension 2).

» A closed positive current T on P2\ S(F) is invariant by
F if T(w) = 0 for every 2-form w which vanishes on the
leaves of F.
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» Let us exemplify this:
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» Let us exemplify this:

» Locally, take coordinates (zi,...,z,) on PZ \ S(F), such
that F is generated by 0/0z. Let

w;:dzl/\'--/\c/l;,-/\~~/\dz,,, 1<n.
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» Let us exemplify this:

» Locally, take coordinates (zi,...,z,) on PZ \ S(F), such
that F is generated by 0/0z. Let

wi=dz A Adz A Adzy, 1< n.

» The positive current T can be locally written in the form

T = if,-jiw,-/\wj

ij=1

where f;; are complex valued measures.
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» To say that T is F-invariant means T A dz; = 0 and
T ANdz; =0 for all i # 1. This gives f; = 0 for

(1,j) # (1,1) and then

T = flliwl N Wiy.
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» To say that T is F-invariant means T A dz; = 0 and
T ANdz; =0 for all i # 1. This gives f; = 0 for
(7,j) # (1,1) and then

T = fll iwl N Wiy.
» T closed means that its distributional derivatives along z
and z; are 0. Hence, T does not depend on z; and

projects to a positive measure on the local transversal
z; = 0 (invariant by the holonomy).
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» To say that T is F-invariant means T A dz; = 0 and
T ANdz; =0 for all i # 1. This gives f; = 0 for
(7,j) # (1,1) and then

T = flliwl N Wiy.

» T closed means that its distributional derivatives along z
and z; are 0. Hence, T does not depend on z; and
projects to a positive measure on the local transversal
z; = 0 (invariant by the holonomy).

» Suppose now that the foliation has only isolated
singularities, hence S(F) is a finite number of points.
This is the generic situation. In this case the closed
positive current T can be extended to all of PZ (Hartogs).
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» We want to comment on the following result of M.
Brunella (2006):
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» We want to comment on the following result of M.
Brunella (2006):

» Theorem
Given n > 2 and d > 2, there exists an open and dense subset
U C Fol(n, d) such that any F € U has no invariant measure.
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» We want to comment on the following result of M.
Brunella (2006):

» Theorem
Given n > 2 and d > 2, there exists an open and dense subset
U C Fol(n, d) such that any F € U has no invariant measure.

» Lins Neto and S. proved the following (1996):
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» We want to comment on the following result of M.
Brunella (2006):

» Theorem
Given n > 2 and d > 2, there exists an open and dense subset
U C Fol(n, d) such that any F € U has no invariant measure.

» Lins Neto and S. proved the following (1996):

» Theorem
Given n > 2 and d > 2, there exists an open and dense subset
U C Fol(n, d) such that any F € U has no invariant algebraic
curve.
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» We want to comment on the following result of M.
Brunella (2006):

» Theorem
Given n > 2 and d > 2, there exists an open and dense subset
U C Fol(n, d) such that any F € U has no invariant measure.

» Lins Neto and S. proved the following (1996):

» Theorem
Given n > 2 and d > 2, there exists an open and dense subset
U C Fol(n, d) such that any F € U has no invariant algebraic
curve.

» U is exactly the same set in both theorems.

M. G. Soares - UFMG



CURRENTS

» U is the set of foliations with the following two
properties: (i) all the singularities of F are hyperbolic and
(ii) F has no invariant algebraic curve.
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» U is the set of foliations with the following two
properties: (i) all the singularities of F are hyperbolic and
(ii) F has no invariant algebraic curve.

» A singularity p of F is hyperbolic if around p the foliation
is generated by a vector field whose linear part at has
eigenvalues \1,..., A, such that

Ai
— ¢ R
Aj 7
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» Brunella's proof runs as follows: he produces a residue
theorem for currents which gives a relation between these
residues and a global geometric object associated to the

foliation:
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» Brunella's proof runs as follows: he produces a residue
theorem for currents which gives a relation between these
residues and a global geometric object associated to the
foliation:

ci(det N3).[T] = Z Res(F, T, p)

PES(F)Nsupp(T)

where ¢;(det N%) € H*(P2,R) is the first Chern class of
the conormal bundle of F and [T] € H,(PZ,R) id the
homology class of T.
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» Then, assuming the foliation has no invariant algebraic
curves and only hyperbolic singularities, it's shown that
Res(F, T,p) = 0. But this implies that
c1(det N3).[T] = 0 which is absurd since
det N3 = O(—n — d), a negative line bundle which has
negative degree on any positive homology class, like [T]
for instance.
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