Singularidades de campos de vectores reales: perfil topológico (I)

Clementa Alonso González

VI Escuela Doctoral de Matemáticas PUCP-UVA 2013

Sea U un abierto del espacio euclídeo \mathbb{R}^n . Un campo de vectores en U es una aplicación

$$\xi: U \to \mathbb{R}^n \simeq T_p \mathbb{R}$$

$$p \mapsto \xi(p) = V_p$$

Sea U un abierto del espacio euclídeo \mathbb{R}^n . Un campo de vectores en U es una aplicación

$$\begin{array}{ccc}
\xi: U & \to & \mathbb{R}^n \simeq T_p \mathbb{R}^n \\
\rho & \mapsto & \xi(\rho) = v_p
\end{array}$$

En coordenadas cartesianas $(x_1, x_2, ..., x_n)$

$$\xi = A_1(x_1, ..., x_n) \frac{\partial}{\partial x_1} + ... + A_n(x_1, ..., x_n) \frac{\partial}{\partial x_n}$$

donde A; son funciones reales definidas en U.

En coordenadas cartesianas $(x_1, x_2, ..., x_n)$

$$\xi = A_1(x_1, ..., x_n) \frac{\partial}{\partial x_1} + ... + A_n(x_1, ..., x_n) \frac{\partial}{\partial x_n}$$

donde A_i son funciones reales definidas en U.

Integrar un campo de vectores ξ :

Encontrar una solución o curva integral

Una curva parametrizada diferenciable $\gamma:I\to U$ en algún intervalo $I\subset\mathbb{R}$ que satisfaga en U el sistema de ecuaciones diferenciales ordinarias

$$\begin{cases} \dot{x_1} = A_1(x_1, ..., x_n) \\ \vdots \\ \dot{x_n} = A_1(x_1, ..., x_n) \end{cases}$$

$$\gamma'(t) = \xi(\gamma(t)) \quad \forall t \in I.$$

Integrar un campo de vectores ξ :

Encontrar una solución o curva integral

Una curva parametrizada diferenciable $\gamma:I\to U$ en algún intervalo $I\subset\mathbb{R}$ que satisfaga en U el sistema de ecuaciones diferenciales ordinarias

$$\begin{cases} \dot{x_1} = A_1(x_1, ..., x_n) \\ \vdots \\ \dot{x_n} = A_1(x_1, ..., x_n) \end{cases}$$

$$\gamma'(t) = \xi(\gamma(t)) \quad \forall t \in I.$$

Integrar un campo de vectores ξ :

Encontrar una solución o curva integral

Una curva parametrizada diferenciable $\gamma:I\to U$ en algún intervalo $I\subset\mathbb{R}$ que satisfaga en U el sistema de ecuaciones diferenciales ordinarias

$$\begin{cases} \dot{x_1} = A_1(x_1, ..., x_n) \\ \vdots \\ \dot{x_n} = A_1(x_1, ..., x_n) \end{cases}$$

$$\gamma'(t) = \xi(\gamma(t)) \quad \forall t \in I.$$

Integrar un campo de vectores ξ :

Encontrar una solución o curva integral

Una curva parametrizada diferenciable $\gamma:I\to U$ en algún intervalo $I\subset\mathbb{R}$ que satisfaga en U el sistema de ecuaciones diferenciales ordinarias

$$\begin{cases} \dot{x_1} = A_1(x_1, ..., x_n) \\ \vdots \\ \dot{x_n} = A_1(x_1, ..., x_n) \end{cases}$$

$$\gamma'(t) = \xi(\gamma(t)) \quad \forall t \in I.$$

Punto singular

Diremos que un punto $x \in U$ es un *punto singular* o *punto de equilibrio* del campo ξ si $\xi(x) = 0$. Los puntos no singulares son *puntos regulares*.

Pregunta

Dado un punto regular $x \in U$, ¿existe alguna curva integral de ξ que pase por $x \in U$?

Teorema de existencia y unicidad de soluciones de sistemas de EDOs

1

Existe un intervalo abierto maximal I_x y una solución maximal única γ_x con la misma clase de diferenciabilidad que los coeficientes A_i y tal que $\gamma(0) = x$.

Flujo de un campo de vectores

El conjunto $\Omega = \{(t, p) \in \mathbb{R} \times U : t \in I_p\}$ es un abierto de \mathbb{R}^{n+1} y la aplicación

$$\Phi:\Omega\to U$$

dada por $\Phi(t,p) = \gamma_p(t)$, a la que llamaremos el *flujo del campo de vectores* ξ , tiene la misma clase de diferenciabilidad que ξ .

Pregunta

Dado un punto regular $x \in U$, ¿existe alguna curva integral de ξ que pase por $x \in U$?

Teorema de existencia y unicidad de soluciones de sistemas de EDOs

 \Downarrow

Existe un intervalo abierto maximal I_x y una solución maximal única γ_x con la misma clase de diferenciabilidad que los coeficientes A_i y tal que $\gamma(0) = x$.

Flujo de un campo de vectores

El conjunto $\Omega = \{(t, p) \in \mathbb{R} \times U : t \in I_p\}$ es un abierto de \mathbb{R}^{n+1} y la aplicación

$$\Phi:\Omega\to U$$

dada por $\Phi(t,p)=\gamma_p(t)$, a la que llamaremos el *flujo del campo de vectores* ξ , tiene la misma clase de diferenciabilidad que ξ .

Pregunta

Dado un punto regular $x \in U$, ¿existe alguna curva integral de ξ que pase por $x \in U$?

Teorema de existencia y unicidad de soluciones de sistemas de EDOs

 \Downarrow

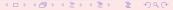
Existe un intervalo abierto maximal I_x y una solución maximal única γ_x con la misma clase de diferenciabilidad que los coeficientes A_i y tal que $\gamma(0) = x$.

Flujo de un campo de vectores

El conjunto $\Omega = \{(t, p) \in \mathbb{R} \times U : t \in I_p\}$ es un abierto de \mathbb{R}^{n+1} y la aplicación

$$\Phi:\Omega\to U$$

dada por $\Phi(t,p) = \gamma_p(t)$, a la que llamaremos el *flujo del campo de vectores* ξ , tiene la misma clase de diferenciabilidad que ξ .



Pregunta

Dado un punto regular $x \in U$, ¿existe alguna curva integral de ξ que pase por $x \in U$?

Teorema de existencia y unicidad de soluciones de sistemas de EDOs

 \Downarrow

Existe un intervalo abierto maximal I_x y una solución maximal única γ_x con la misma clase de diferenciabilidad que los coeficientes A_i y tal que $\gamma(0) = x$.

Flujo de un campo de vectores

El conjunto $\Omega=\{(t,p)\in\mathbb{R}\times U:t\in I_p\}$ es un abierto de \mathbb{R}^{n+1} y la aplicación

$$\Phi:\Omega\to \textbf{\textit{U}}$$

dada por $\Phi(t, p) = \gamma_p(t)$, a la que llamaremos el *flujo del campo de vectores* ξ , tiene la misma clase de diferenciabilidad que ξ .

Trayectorias

Sea $\gamma:I\to U$ una solución maximal. Su imagen

$$\Gamma_{\gamma} = \{ \gamma(t) : t \in I \} \subset U$$

dotada con la orientación inducida por γ será una *trayectoria* u *órbita* asociada a γ .

Podemos distinguir tres posiblidades para una solución maximal γ de ξ :

- $oldsymbol{0}$ γ es una biyección en su imagen.
- \circ γ es constante.
- \bullet γ es una función periódica.

Espacio de fases

Por *espacio de fases* de un campo de vectores entendemos el conjunto de todas las órbitas (órbitas orientadas regulares y puntos singulares) del mismo en el abierto U. Este conjunto es una partición de U. Diremos que esta partición es la *foliación generada por* ξ . La denotaremos \mathcal{F}_{ξ} .

Comparar mapas de fase: equivalencias

Equivalencia topológica

Dados ξ_1 y ξ_2 dos campos de vectores definidos en abiertos respectivos U_1 y U_2 de \mathbb{R}^2 . Decimos que ξ_1 es *topológicamente equivalente* a ξ_2 si existe $h:U_1\to U_2$ un homeomorfismo que envíe trayectorias de ξ_1 en trayectorias de ξ_2 preservando la orientación. Llamaremos a h una equivalencia topológica o \mathcal{C}^0 -equivalencia.

Comparar mapas de fase: equivalencias

Conjugación topológica

Si consideramos $\Phi_1:\Omega_1\to\mathbb{R}^2$ y $\Phi_2:\Omega_2\to\mathbb{R}^2$ los flujos generados por los campos de vectores ξ_1 y ξ_2 respectivamente. Decimos que ξ_1 es topológicamente conjugado a ξ_2 si existe $h:U_1\to U_2$ un homeomorfismo tal que

$$h(\Phi_1(t,x)) = \Phi_2(t,h(x)) \quad \forall (t,x) \in \Omega_1.$$

Llamaremos a h una conjugación topológica o C^0 -conjugación.

Nuestros objetivos

Objetivo 1

Clasificar, decir cuándo dos campos son localmente topológicamente equivalentes.

Objetivo 2

Determinación de un representante (también local) lo más sencillo posible del tipo topológico de un campo de vectores ε .

Nuestros objetivos

Objetivo 1

Clasificar, decir cuándo dos campos son localmente topológicamente equivalentes.

Objetivo 2

Determinación de un representante (también local) lo más sencillo posible del tipo topológico de un campo de vectores ξ .

Puntos regulares

Teorema de rectificación de campos de vectores

Si $p \in U$ tal que $\xi(p) \neq 0$, entonces $\xi \sim \frac{\partial}{\partial x}$

Puntos regulares

Teorema de rectificación de campos de vectores

 \downarrow

Si $p \in U$ tal que $\xi(p) \neq 0$, entonces $\xi \sim \frac{\partial}{\partial x}$

$$\xi = A(x,y)\frac{\partial}{\partial x} + B(x,y)\frac{\partial}{\partial y}$$

$$\xi \rightsquigarrow L_0 \xi = \begin{pmatrix} \frac{\partial A}{\partial x}(0) & \frac{\partial A}{\partial y}(0) \\ \frac{\partial B}{\partial x}(0) & \frac{\partial B}{\partial y}(0) \end{pmatrix}$$

- No degenerado
 - Hiperbólico
 - No hiperbólico
- - Semi-hiperbólico
 - Nilpotente
 - Parte lineal nula

$$\xi = A(x,y)\frac{\partial}{\partial x} + B(x,y)\frac{\partial}{\partial y}$$

$$\xi \rightsquigarrow L_0 \xi = \begin{pmatrix} \frac{\partial A}{\partial x}(0) & \frac{\partial A}{\partial y}(0) \\ \frac{\partial B}{\partial x}(0) & \frac{\partial B}{\partial y}(0) \end{pmatrix}$$

- No degenerado
 - Hiperbólico
 - No hiperbólico
- - Semi-hiperbólico
 - Nilpotente
 - Parte lineal nula

$$\xi = A(x,y)\frac{\partial}{\partial x} + B(x,y)\frac{\partial}{\partial y}$$

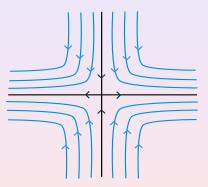
$$\xi \rightsquigarrow L_0 \xi = \begin{pmatrix} \frac{\partial A}{\partial x}(0) & \frac{\partial A}{\partial y}(0) \\ \frac{\partial B}{\partial x}(0) & \frac{\partial B}{\partial y}(0) \end{pmatrix}$$

- No degenerado
 - Hiperbólico
 Na bis a de élia
 - No hiperbólico
- 2 Degenerado
 - Semi-hiperbólico
 - Nilpotente
 - Parte lineal nula

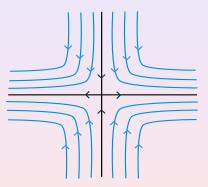
$$\left(\begin{array}{cc} \lambda & \mathbf{0} \\ \mathbf{0} & \mu \end{array}\right) \qquad \left(\begin{array}{cc} \lambda & \mathbf{1} \\ \mathbf{0} & \lambda \end{array}\right) \qquad \left(\begin{array}{cc} \alpha & \beta \\ -\beta & \alpha \end{array}\right) \qquad \left(\begin{array}{cc} \mathbf{0} & \beta \\ -\beta & \mathbf{0} \end{array}\right)$$

$$\left(\begin{array}{cc}
\lambda & 0 \\
0 & 0
\end{array}\right) \qquad
\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) \qquad
\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right)$$

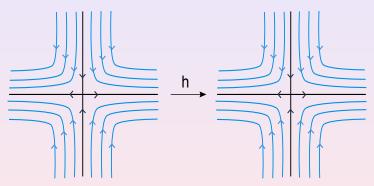
$${\it C}=\left(egin{array}{cc} \lambda & 0 \\ 0 & \mu \end{array}
ight) {
m con} \; \lambda < 0 < \mu. \; {
m SILLA}.$$



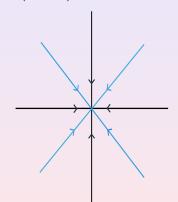
$${\it C}=\left(egin{array}{cc} \lambda & 0 \\ 0 & \mu \end{array}
ight) {
m con} \; \lambda < 0 < \mu. \; {
m SILLA}.$$

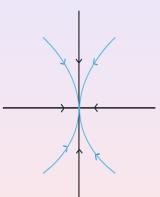


¿Son topológicamente equivalentes dos sillas?

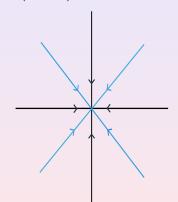


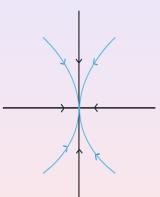
$$C=\left(egin{array}{cc} \lambda & 0 \ 0 & \mu \end{array}
ight) {
m con} \ \lambda \leq \mu < 0. \ {
m NODO} \ {
m ESTABLE}$$



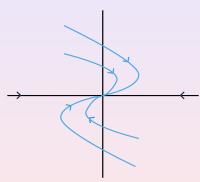


$$C=\left(egin{array}{cc} \lambda & 0 \ 0 & \mu \end{array}
ight) {
m con} \ \lambda \leq \mu < 0. \ {
m NODO} \ {
m ESTABLE}$$

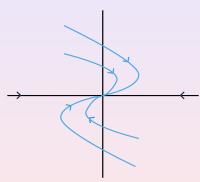




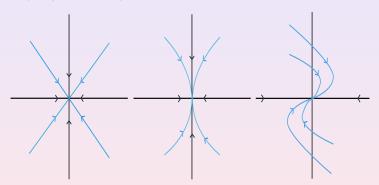
$$C = \left(egin{array}{cc} \lambda & 1 \\ 0 & \lambda \end{array}
ight) {
m con} \ \lambda < 0. \ {
m NODO} \ {
m ESTABLE}$$



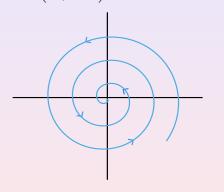
$$C = \left(egin{array}{cc} \lambda & 1 \\ 0 & \lambda \end{array}
ight) {
m con} \ \lambda < 0. \ {
m NODO} \ {
m ESTABLE}$$

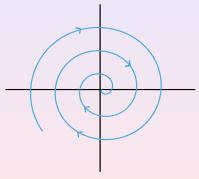


¿Son topológicamente equivalentes dos nodos?

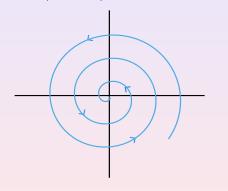


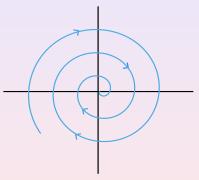
$$C = \left(egin{array}{cc} lpha & eta \ -eta & lpha \end{array}
ight) {
m con} \; lpha < {
m 0.} \; {
m FOCO} \; {
m ESTABLE}$$



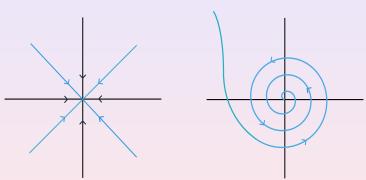


$$C = \left(egin{array}{cc} lpha & eta \ -eta & lpha \end{array}
ight) {
m con} \; lpha < {
m 0.} \; {
m FOCO} \; {
m ESTABLE}$$





¿Son topológicamente equivalentes un nodo y un foco?



Clasificación topológica lineales hiperbólicas

- Silla
- Nodo estable
- Nodo inestable

Teorema de Hartman-Grobman

Sea ξ un campo de vectores de clase \mathcal{C}^1 en un abierto U. Supongamos que $0 \in U$ y que es un punto singular de ξ de tipo hiperbólico. Entonces el campo lineal $L_0\xi$ y ξ son topológicamente conjugados en un entorno del origen.

Consecuencia I

Para el caso hiperbólico la parte lineal es un representante del tipo topológico del campo de vectores.

Consecuencia II

Existen tres clases de equivalencia en el caso hiperbólico: silla, nodo estable y nodo inestable.

Teorema de Hartman-Grobman

Sea ξ un campo de vectores de clase \mathcal{C}^1 en un abierto U. Supongamos que $0 \in U$ y que es un punto singular de ξ de tipo hiperbólico. Entonces el campo lineal $L_0\xi$ y ξ son topológicamente conjugados en un entorno del origen.

Consecuencia I

Para el caso hiperbólico la parte lineal es un representante del tipo topológico del campo de vectores.

Consecuencia II

Existen tres clases de equivalencia en el caso hiperbólico: silla, nodo estable y nodo inestable.

Teorema de Hartman-Grobman

Sea ξ un campo de vectores de clase \mathcal{C}^1 en un abierto U. Supongamos que $0 \in U$ y que es un punto singular de ξ de tipo hiperbólico. Entonces el campo lineal $L_0\xi$ y ξ son topológicamente conjugados en un entorno del origen.

Consecuencia I

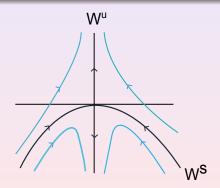
Para el caso hiperbólico la parte lineal es un representante del tipo topológico del campo de vectores.

Consecuencia II

Existen tres clases de equivalencia en el caso hiperbólico: silla, nodo estable y nodo inestable.

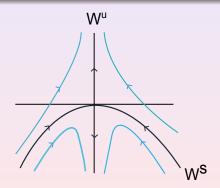
Ejemplo

$$\xi = -x\frac{\partial}{\partial x} + (x^2 + y)\frac{\partial}{\partial y}$$



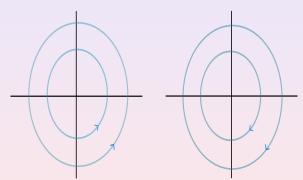
Ejemplo

$$\xi = -x\frac{\partial}{\partial x} + (x^2 + y)\frac{\partial}{\partial y}$$



Singularidades no degeneradas no-hiperbólicas: centro-foco

$$C=\left(\begin{array}{cc}0&\beta\\-\beta&0\end{array}\right)$$
 CENTRO (LINEAL) Todas las órbitas regulares son periódicas.

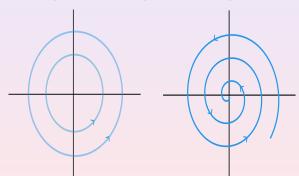


Singularidades no degeneradas no-hiperbólicas: centro-foco

Sin embargo, si consideramos un campo de vectores NO LINEAL cuya parte lineal sea

$$\left(\begin{array}{cc}
0 & \beta \\
-\beta & 0
\end{array}\right)$$

puede tener un comportamiento de tipo centro o de tipo foco.

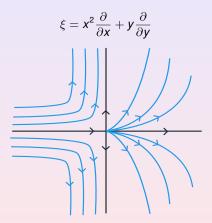


Singularidades semihiperbólicas

$$\textit{C} = \left(\begin{array}{cc} 0 & 0 \\ 0 & \lambda \end{array} \right)$$

Singularidades semihiperbólicas

$$\textit{C} = \left(\begin{array}{cc} 0 & 0 \\ 0 & \lambda \end{array} \right)$$

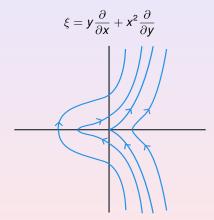


Singularidades nilpotentes

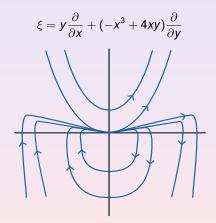
$$C = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$$

Singularidades nilpotentes

$$C = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$$



Singularidades nilpotentes



Singularidades con parte lineal nula

$$\xi = (x^2 + xy)\frac{\partial}{\partial x} + (\frac{1}{2}y^2 + xy)\frac{\partial}{\partial y}$$

Preguntas

Pregunta 1

¿Podemos clasificar topológicamente las singularidades que no sean hiperbólicas?

Pregunta 2

¿Podemos encontrar un representante de cada clase de equivalencia que juegue, para las degeneradas, el papel de la parte lineal en el caso hiperbólico?

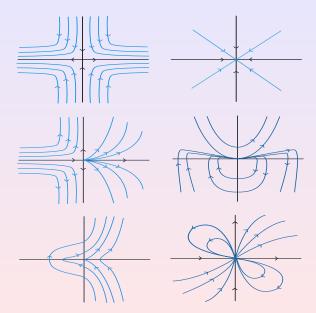
Preguntas

Pregunta 1

¿Podemos clasificar topológicamente las singularidades que no sean hiperbólicas?

Pregunta 2

¿Podemos encontrar un representante de cada clase de equivalencia que juegue, para las degeneradas, el papel de la parte lineal en el caso hiperbólico?



Descomposición sectorial de campos de vectores planos

Órbita característica

Una *órbita característica* $\gamma(t)$ en el origen es una órbita que tiende al origen en tiempo postivo (o en tiempo negativo) con una tangente bien definida, es decir, existe el límite $\lim_{t\to\infty} \gamma(t)/\|\gamma(t)\|$

Teorema: Descomposición sectorial de campos de vectores planos

Supongamos que ξ es un campo plano analítico con una singularidad en el origen que no sea de tipo centro-foco. Entonces existe un número finito de órbitas características de ξ en el origen que determinan sectores de tipo hiperbólico, elíptico o parabólico que componen un entorno de la singularidad.

Descomposición sectorial de campos de vectores planos

Órbita característica

Una *órbita característica* $\gamma(t)$ en el origen es una órbita que tiende al origen en tiempo postivo (o en tiempo negativo) con una tangente bien definida, es decir, existe el límite $\lim_{t\to\infty}\gamma(t)/\|\gamma(t)\|$

Teorema: Descomposición sectorial de campos de vectores planos

Supongamos que ξ es un campo plano analítico con una singularidad en el origen que no sea de tipo centro-foco. Entonces existe un número finito de órbitas características de ξ en el origen que determinan sectores de tipo hiperbólico, elíptico o parabólico que componen un entorno de la singularidad.

La explosión polar de \mathbb{R}^2 en el origen es el morfismo que consiste en tomar "coordenadas polares":

$$\phi: \quad \mathbb{S}^1 \times \mathbb{R} \quad \to \quad \mathbb{R}^2$$

$$(\theta, r) \quad \mapsto \quad (r \cos \theta, r \sin \theta)$$

Consideremos ξ un campo de vectores analítico en \mathbb{R}^2 con una singularidad en el origen.

Sea $\widetilde{\xi}$ el campo de vectores definido en el cilindro $\mathbb{S}^1 \times \mathbb{R}$ tal que $\phi_*(\widetilde{\xi}) = \xi$ Lo llamaremos el *transformado total* de ξ .

Consideremos ξ un campo de vectores analítico en \mathbb{R}^2 con una singularidad en el origen.

Sea $\widetilde{\xi}$ el campo de vectores definido en el cilindro $\mathbb{S}^1 \times \mathbb{R}$ tal que $\phi_*(\widetilde{\xi}) = \xi$. Lo llamaremos el *transformado total* de ξ .

Si

$$\xi = A(x,y)\frac{\partial}{\partial x} + B(x,y)\frac{\partial}{\partial y}$$

у

$$k = \min\{\operatorname{ord}(A), \operatorname{ord}(B)\}$$

cuando k>1 , el campo $\widetilde{\xi}$ se anula en $\{r=0\}$. Podemos considerar el transformado estricto de ξ

$$\overline{\xi} = \frac{1}{r^{k-1}}(\widetilde{\xi}).$$

Si $\theta \in (-\pi/2, \pi/2) \cup (\pi/2, 3\pi/2)$ usaremos la siguiente carta:

$$\varphi^{x}:(\theta,r)\mapsto(r\cos\theta,\tan\theta)=(x',y')$$

En esta carta, la expresión de ϕ está dada por

$$\phi^{\mathsf{X}}:(\mathsf{X}',\mathsf{Y}')\mapsto (\mathsf{X}',\mathsf{X}'\mathsf{Y}').$$

Se tiene que

$$\phi = \phi^{\mathsf{x}} \circ \varphi^{\mathsf{x}} : (\theta, r) \mapsto (r \cos \theta, r \sin \theta).$$

Llamaremos a ϕ^x explosión en la dirección de x.

Si $\theta \in (-\pi/2, \pi/2) \cup (\pi/2, 3\pi/2)$ usaremos la siguiente carta:

$$\varphi^{x}:(\theta,r)\mapsto(r\cos\theta,\tan\theta)=(x',y')$$

En esta carta, la expresión de ϕ está dada por

$$\phi^{\mathsf{x}}:(\mathsf{x}',\mathsf{y}')\mapsto(\mathsf{x}',\mathsf{x}'\mathsf{y}').$$

Se tiene que

$$\phi = \phi^{\mathsf{x}} \circ \varphi^{\mathsf{x}} : (\theta, r) \mapsto (r \cos \theta, r \sin \theta).$$

Llamaremos a ϕ^x explosión en la dirección de x.

Si $\theta \in (-\pi/2, \pi/2) \cup (\pi/2, 3\pi/2)$ usaremos la siguiente carta:

$$\varphi^{x}:(\theta,r)\mapsto(r\cos\theta,\tan\theta)=(x',y')$$

En esta carta, la expresión de ϕ está dada por

$$\phi^{\mathsf{x}}:(\mathsf{x}',\mathsf{y}')\mapsto(\mathsf{x}',\mathsf{x}'\mathsf{y}').$$

Se tiene que

$$\phi = \phi^{\mathsf{x}} \circ \varphi^{\mathsf{x}} : (\theta, r) \mapsto (r \cos \theta, r \sin \theta).$$

Llamaremos a ϕ^x explosión en la dirección de x.

Si $\theta \in (0, \pi) \cup (\pi, 2\pi)$ usamos una carta dada por:

$$\varphi^{y}:(\theta,r)\mapsto(\cot\theta,r\sin\theta)=(x'',y'')$$

En esta carta, la expresión de ϕ está dada por

$$\phi^{y}:(x'',y'')\mapsto(x''y'',y'').$$

Se tiene que

$$\phi = \phi^{\mathsf{y}} \circ \varphi^{\mathsf{y}} : (\theta, r) \mapsto (r \cos \theta, r \sin \theta).$$

Llamaremos a ϕ^y explosión en la dirección de y

Si $\theta \in (0, \pi) \cup (\pi, 2\pi)$ usamos una carta dada por:

$$\varphi^{y}:(\theta,r)\mapsto(\cot\theta,r\sin\theta)=(x'',y'')$$

En esta carta, la expresión de ϕ está dada por

$$\phi^{y}:(x'',y'')\mapsto(x''y'',y'').$$

Se tiene que

$$\phi = \phi^{y} \circ \varphi^{y} : (\theta, r) \mapsto (r \cos \theta, r \sin \theta).$$

Llamaremos a ϕ^y explosión en la dirección de y

Si $\theta \in (0, \pi) \cup (\pi, 2\pi)$ usamos una carta dada por:

$$\varphi^{y}:(\theta,r)\mapsto(\cot\theta,r\sin\theta)=(x'',y'')$$

En esta carta, la expresión de ϕ está dada por

$$\phi^{y}:(x'',y'')\mapsto(x''y'',y'').$$

Se tiene que

$$\phi = \phi^{\mathbf{y}} \circ \varphi^{\mathbf{y}} : (\theta, r) \mapsto (r \cos \theta, r \sin \theta).$$

Llamaremos a ϕ^y explosión en la dirección de y

Denotaremos por $\widetilde{\xi}^x$ y $\widetilde{\xi}^y$ respectivamente los transformados totales de ξ por ϕ^x y ϕ^y . En las cartas respectivas se expresan:

$$\begin{split} \widetilde{\xi}^x &= A(x',x'y') \tfrac{\partial}{\partial x'} + \tfrac{1}{x'} (B(x',x'y') - y' A(x',x'y')) \tfrac{\partial}{\partial y'} \\ \widetilde{\xi}^y &= \tfrac{1}{y''} (A(x''y'',y'') - x'' B(x''y'',y'')) \tfrac{\partial}{\partial x''} + B(x''y'',y'') \tfrac{\partial}{\partial y''} \end{split}$$

La ecuación del divisor excepcional es $\{x'=0\}$ e $\{y''=0\}$ respectivamente en cada carta.

Podemos definir los transformados estrictos respectivos

$$\overline{\xi}^{x} = \frac{1}{x'^{k-1}}\widetilde{\xi} \qquad \overline{\xi}^{y} = \frac{1}{y''^{k-1}}\widetilde{\xi}.$$

La ecuación del divisor excepcional es $\{x'=0\}$ e $\{y''=0\}$ respectivamente en cada carta.

Podemos definir los transformados estrictos respectivos:

$$\overline{\xi}^{x} = \frac{1}{x'^{k-1}}\widetilde{\xi} \qquad \overline{\xi}^{y} = \frac{1}{y''^{k-1}}\widetilde{\xi}.$$

Alternativa

Añadir dos explosiones direccionales adicionales para trabajar respectivamente en $x^{\prime}<0$ e $y^{\prime\prime}<0$

$$\begin{array}{l} \phi^{-x}: (x',y') \mapsto (-x',-x'y') \\ \phi^{-y}: (x'',y'') \mapsto (-x''y'',-y'') \end{array}$$

Foliación transformada estricta

Los transformados estrictos $\overline{\xi}^x$ y $\overline{\xi}^y$ generan la misma foliación en la intersección de las cartas: si \mathcal{F}_ξ es la foliación generada por el campo ξ en un entorno del origen, podemos hablar de la *foliación* $\phi^*\mathcal{F}_\xi$, *transformada estricta de* \mathcal{F}_ξ *por* ϕ en el cilindro.

Si el origen es un punto singular aislado de ξ , $\phi^*\mathcal{F}_\xi$ sólo tiene un número finito de puntos singulares en el divisor D. Hay dos posibilidades:

- Caso *no-dicrítico*: *D* es invariante por $\phi^* \mathcal{F}_{\ell}$
- ② Caso dicrítico: D es transversal a las hojas regulares de $\phi^*\mathcal{F}_\xi$ en casi todos los puntos.

Foliación transformada estricta

Los transformados estrictos $\overline{\xi}^x$ y $\overline{\xi}^y$ generan la misma foliación en la intersección de las cartas: si \mathcal{F}_ξ es la foliación generada por el campo ξ en un entorno del origen, podemos hablar de la *foliación* $\phi^*\mathcal{F}_\xi$, *transformada estricta de* \mathcal{F}_ξ *por* ϕ en el cilindro.

Si el origen es un punto singular aislado de ξ , $\phi^* \mathcal{F}_{\xi}$ sólo tiene un número finito de puntos singulares en el divisor D. Hay dos posibilidades:

- **①** Caso *no-dicrítico*: *D* es invariante por $\phi^* \mathcal{F}_{\ell}$
- ② Caso *dicrítico*: D es transversal a las hojas regulares de $\phi^*\mathcal{F}_\xi$ en casi todos los puntos.

Foliación transformada estricta

Los transformados estrictos $\overline{\xi}^x$ y $\overline{\xi}^y$ generan la misma foliación en la intersección de las cartas: si \mathcal{F}_ξ es la foliación generada por el campo ξ en un entorno del origen, podemos hablar de la *foliación* $\phi^*\mathcal{F}_\xi$, *transformada estricta de* \mathcal{F}_ξ *por* ϕ en el cilindro.

Si el origen es un punto singular aislado de ξ , $\phi^* \mathcal{F}_{\xi}$ sólo tiene un número finito de puntos singulares en el divisor D. Hay dos posibilidades:

- **①** Caso *no-dicrítico*: *D* es invariante por $\phi^* \mathcal{F}_{\xi}$
- ② Caso *dicrítico*: D es transversal a las hojas regulares de $\phi^*\mathcal{F}_\xi$ en casi todos los puntos.

Foliación transformada estricta

Los transformados estrictos $\overline{\xi}^x$ y $\overline{\xi}^y$ generan la misma foliación en la intersección de las cartas: si \mathcal{F}_ξ es la foliación generada por el campo ξ en un entorno del origen, podemos hablar de la *foliación* $\phi^*\mathcal{F}_\xi$, *transformada estricta de* \mathcal{F}_ξ *por* ϕ en el cilindro.

Si el origen es un punto singular aislado de ξ , $\phi^* \mathcal{F}_{\xi}$ sólo tiene un número finito de puntos singulares en el divisor D. Hay dos posibilidades:

- **①** Caso *no-dicrítico*: *D* es invariante por $\phi^* \mathcal{F}_{\xi}$
- **2** Caso *dicrítico*: *D* es transversal a las hojas regulares de $\phi^* \mathcal{F}_{\xi}$ en casi todos los puntos.

Explosión no orientada

Si en $\mathbb{R} \times \mathbb{S}^1$ se identifican los puntos cuya imagen por ϕ coincide se obtiene, por paso al cociente, una variedad M y un morfismo de explosión (proyectivo)

$$\pi: \mathbf{M} \to \mathbb{R}^2$$
.

- M es una variedad analítica real (la banda de Möbius no acotada)
- ② π es una aplicación analítica *propia* que restringe a un isomorfismo entre $M \setminus \pi^{-1}(0)$ y $\mathbb{R}^2 \setminus \{0\}$
- ① El divisor excepcional de la explosión, $D = \pi^{-1}(0)$, es isomorfo a la recta proyectiva real $\mathbb{P}^1_{\mathbb{R}}$.

Explosión no orientada

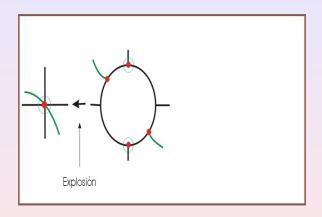
Si en $\mathbb{R} \times \mathbb{S}^1$ se identifican los puntos cuya imagen por ϕ coincide se obtiene, por paso al cociente, una variedad M y un morfismo de explosión (proyectivo)

$$\pi: \mathbf{M} \to \mathbb{R}^2$$
.

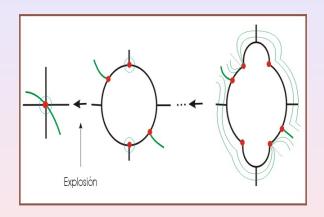
- M es una variedad analítica real (la banda de Möbius no acotada)
- ② π es una aplicación analítica *propia* que restringe a un isomorfismo entre $M \setminus \pi^{-1}(0)$ y $\mathbb{R}^2 \setminus \{0\}$
- **9** El divisor excepcional de la explosión, $D = \pi^{-1}(0)$, es isomorfo a la recta proyectiva real $\mathbb{P}^1_{\mathbb{R}}$.

Secuencias de explosiones

Secuencias de explosiones



Secuencias de explosiones



Teorema de reducción de Singularidades en el caso plano

Pregunta

¿Es posible encontrar una secuencia de explosiones tal que todas las singularidades finales sean elementales?

Reducción de singularidades en el plano

Sea ξ un campo de vectores analítico plano tal que el origen es una singularidad aislada de ξ . Entonces existe una secuencia finita de explosiones de puntos $\Pi:M\to\mathbb{R}^2$ cada una de ellas centrada en un punto singular de la foliación transformada estricta de la etapa anterior de manera que:

- ① La foliación transformada estricta final $\Pi^* \mathcal{F}_{\xi}$ tiene únicamante singularidades simples.
- Q Las componentes del divisor excepcional son o bien invariantes por Π* F_c o bien tansversales a las hojas de Π* F_c.

Teorema de reducción de Singularidades en el caso plano

Pregunta

¿Es posible encontrar una secuencia de explosiones tal que todas las singularidades finales sean elementales?

Reducción de singularidades en el plano

Sea ξ un campo de vectores analítico plano tal que el origen es una singularidad aislada de ξ . Entonces existe una secuencia finita de explosiones de puntos $\Pi:M\to\mathbb{R}^2$ cada una de ellas centrada en un punto singular de la foliación transformada estricta de la etapa anterior de manera que:

- La foliación transformada estricta final $\Pi^* \mathcal{F}_{\xi}$ tiene únicamante singularidades simples.
- ② Las componentes del divisor excepcional son o bien invariantes por $\Pi^* \mathcal{F}_{\mathcal{E}}$ o bien tansversales a las hojas de $\Pi^* \mathcal{F}_{\mathcal{E}}$.

Descomposición sectorial

Descomposición sectorial

Ejercicios

Determina la descomposición sectorial del campo

$$\xi = (yx + x^3)\frac{\partial}{\partial x} + (x^2y - 2y^2)\frac{\partial}{\partial y}$$

Oetermina la verdad o falsedad de la siguiente afirmación:

Si dos campos de vectores no tienen la misma reducción de singularidades, no pueden tener descomposiciones sectoriales homeomorfas.

Singularidades de campos de vectores reales: perfil topológico (I)

Clementa Alonso González

VI Escuela Doctoral de Matemáticas PUCP-UVA 2013

